Circumcenter Theorem
Circumcenter
The three perpendicular bisectors of a triangle meet in a single point, called the circumcenter .
Circumcenter Theorem
The vertices of a triangle are equidistant from the circumcenter.
Given:
, the perpendicular bisectors of and .
To prove:
The perpendicular bisectors intersect in a point and that point is equidistant from the vertices.
The perpendicular bisectors of and intersect at point .
Let us prove that point lies on the perpendicular bisector of and it is equidistant from , and .
Draw and .
Any point on the perpendicular bisector of a segment is equidistant from the endpoints of the segment.
So, and .
By the transitive property,
.
Any point equidistant from the end points of a segment lies on its perpendicular bisector.
So, is on the perpendicular bisector of .
Since , point is equidistant from , and .
This means that there is a circle having its center at the circumcenter and passing through all three vertices of the triangle. This circle is called the circumcircle .
- Chess Tutors
- ACT Reading Tutors
- SPPA - Senior Professional Public Adjuster Test Prep
- FTCE - Florida Teacher Certification Examinations Courses & Classes
- USMLE Courses & Classes
- Old Prussian Tutors
- AAI - Accredited Adviser in Insurance Test Prep
- Citrix Training
- Series 3 Courses & Classes
- NBDE Test Prep
- SAT Subject Test in Mathematics Level 1 Test Prep
- Exam SRM - Statistics for Risk Modeling Test Prep
- SAT Subject Test in Spanish Courses & Classes
- PANRE - Physician Assistant National Recertifying Examination Test Prep
- Planetary Geology Tutors
- SAT Writing and Language Tutors
- ARM-E - Associate in Management-Enterprise Risk Management Courses & Classes
- FAA - Federal Aviation Administration examination Courses & Classes
- 11th Grade Homework Tutors
- CCNA Wireless - Cisco Certified Network Associate-Wireless Courses & Classes