(imaginary unit)
Consider the following sequence of statements.
since
since
since
since
since
There is no real number which can be filled in the blanks in the last line. (Remember that any negative number multiplied by itself is positive.)
So, we say that the required number is imaginary , and we call it .
The imaginary unit is defined by the equation . This enables us to define the square root of any negative number. The term “imaginary” is used because there is no real number that has a negative square.
Powers of
Note that and .
As any other quantity, raised to power of zero is . That is, .
We can use these equations to find the higher powers of .
You can see that the cycle repeats every four powers after this.
See also powers of i .
Example 1:
What is the value of ?
Example 2:
Solve the quadratic equation .
Subtract from both sides.
Take the square root on both sides.
A complex number is a number with a real part and an imaginary part – that is, it is the sum of a real number and a multiple of . The general form of a complex number is where and are real numbers and is the principal square root of .
- GRE Test Prep
- Cisco Training
- ARM Assembly Language Tutors
- Certified Ethical Hacker Test Prep
- Wisconsin Bar Exam Courses & Classes
- PSAT Tutors
- 3rd Grade Social Studies Tutors
- Series 6 Courses & Classes
- Series 27 Courses & Classes
- Manufacturing Processes Tutors
- PRAXIS Tutors
- Expository Writing Tutors
- Series 9 Test Prep
- CCNA Industrial - Cisco Certified Network Associate-Industrial Test Prep
- Horizon Zero Dawn Tutors
- HSPT Verbal Tutors
- Software QA Tutors
- CCNA Industrial - Cisco Certified Network Associate-Industrial Test Prep
- Division Tutors
- New Mexico Bar Exam Courses & Classes