8th Grade Math › Apply the Pythagorean Theorem to Find the Distance Between Two Points in a Coordinate System: CCSS.Math.Content.8.G.B.8
In order to get to work, Jeff leaves home and drives 4 miles due north, then 3 miles due east, followed by 6 miles due north and, finally, 7 miles due east. What is the straight line distance from Jeff’s work to his home?
2√5
11
10√2
15
6√2
Jeff drives a total of 10 miles north and 10 miles east. Using the Pythagorean theorem (a2+b2=c2), the direct route from Jeff’s home to his work can be calculated. 102+102=c2. 200=c2. √200=c. √100√2=c. 10√2=c
If and
, how long is side
?
Not enough information to solve
This problem is solved using the Pythagorean theorem . In this formula
and
are the legs of the right triangle while
is the hypotenuse.
Using the labels of our triangle we have:
Use the Pythagorean Theorem to calculate the length of the line shown on the provided coordinate plane. Round the answer to the nearest tenth.
Notice that the diagonal line from the problem could be the hypotenuse of a right triangle. If we add two more lines, then we can create a closed figure in the shape of a triangle:
Let's use the Pythagorean Theorem to calculate the length of the line that represents the hypotenuse of a right triangle. The Pythagorean Theorem states that for right triangles:
In this equation:
We can count the number of units on the coordinate plane that were used to create the legs of our drawn triangle. Afterwards, we can use the Pythagorean Theorem to solve for the length of the hypotenuse, or the original diagonal line.
In order to solve for this problem we want to substitute in the known side lengths for the triangle's legs:
To get from his house to the hardware store, Bob must drive 3 miles to the east and then 4 miles to the north. If Bob was able to drive along a straight line directly connecting his house to the store, how far would he have to travel then?
5 miles
25 miles
9 miles
15 miles
7 miles
Since east and north directions are perpendicular, the possible routes Bob can take can be represented by a right triangle with sides a and b of length 3 miles and 5 miles, respectively. The hypotenuse c represents the straight line connecting his house to the store, and its length can be found using the Pythagorean theorem: _c_2 = 32+ 42 = 25. Since the square root of 25 is 5, the length of the hypotenuse is 5 miles.
Give the perimeter of the above parallelogram if .
By the Theorem:
, and
The perimeter of the parallelogram is
Use the Pythagorean Theorem to calculate the length of the line shown on the provided coordinate plane. Round the answer to the nearest tenth.
Notice that the diagonal line from the problem could be the hypotenuse of a right triangle. If we add two more lines, then we can create a closed figure in the shape of a triangle:
Let's use the Pythagorean Theorem to calculate the length of the line that represents the hypotenuse of a right triangle. The Pythagorean Theorem states that for right triangles:
In this equation:
We can count the number of units on the coordinate plane that were used to create the legs of our drawn triangle. Afterwards, we can use the Pythagorean Theorem to solve for the length of the hypotenuse, or the original diagonal line.
In order to solve for this problem we want to substitute in the known side lengths for the triangle's legs:
You leave on a road trip driving due North from Savannah, Georgia, at 8am. You drive for 5 hours at 60mph and then head due East for 2 hours at 50mph. After those 7 hours, how far are you Northeast from Savannah as the crow flies (in miles)?
Distance = hours * mph
North Distance = 5 hours * 60 mph = 300 miles
East Distance = 2 hours * 50 mph = 100 miles
Use Pythagorean Theorem to determine Northeast Distance
3002 + 1002 =NE2
90000 + 10000 = 100000 = NE2
NE = √100000
Use the Pythagorean Theorem to calculate the length of the line shown on the provided coordinate plane. Round the answer to the nearest tenth.
Notice that the diagonal line from the problem could be the hypotenuse of a right triangle. If we add two more lines, then we can create a closed figure in the shape of a triangle:
Let's use the Pythagorean Theorem to calculate the length of the line that represents the hypotenuse of a right triangle. The Pythagorean Theorem states that for right triangles:
In this equation:
We can count the number of units on the coordinate plane that were used to create the legs of our drawn triangle. Afterwards, we can use the Pythagorean Theorem to solve for the length of the hypotenuse, or the original diagonal line.
In order to solve for this problem we want to substitute in the known side lengths for the triangle's legs:
Use the Pythagorean Theorem to calculate the length of the line shown on the provided coordinate plane. Round the answer to the nearest tenth.
Notice that the diagonal line from the problem could be the hypotenuse of a right triangle. If we add two more lines, then we can create a closed figure in the shape of a triangle:
Let's use the Pythagorean Theorem to calculate the length of the line that represents the hypotenuse of a right triangle. The Pythagorean Theorem states that for right triangles:
In this equation:
We can count the number of units on the coordinate plane that were used to create the legs of our drawn triangle. Afterwards, we can use the Pythagorean Theorem to solve for the length of the hypotenuse, or the original diagonal line.
In order to solve for this problem we want to substitute in the known side lengths for the triangle's legs:
Justin travels to the east and
to the north. How far away from his starting point is he now?
This is solving for the hypotenuse of a triangle. Using the Pythagorean Theorem, which says that