Geometry and Graphs - GED Math
Card 0 of 4270

Note: Figure NOT drawn to scale.
Refer to the above diagram.
.
is a right angle. What percent of
has been shaded in?
Note: Figure NOT drawn to scale.
Refer to the above diagram. .
is a right angle. What percent of
has been shaded in?
is a right triangle with legs
; its area is half the product of its legs, which is

is a right triangle with legs

and
;
its area is half the product of its legs, which is

The shaded region is the former triangle removed from the latter triangle; its area is the difference of the two:
.
This region is therefore
of
.
is a right triangle with legs
; its area is half the product of its legs, which is
is a right triangle with legs
and
;
its area is half the product of its legs, which is
The shaded region is the former triangle removed from the latter triangle; its area is the difference of the two: .
This region is therefore
of
.
Compare your answer with the correct one above

Note: Figure NOT drawn to scale.
Refer to the above diagram.
.
is a right angle. What is the area of the shaded region?
Note: Figure NOT drawn to scale.
Refer to the above diagram. .
is a right angle. What is the area of the shaded region?
is a right triangle with legs
; its area is half the product of its legs, which is

is a right triangle with legs

and
;
its area is half the product of its legs, which is

The shaded region is the former triangle removed from the latter triangle; its area is the difference of the two:
.
is a right triangle with legs
; its area is half the product of its legs, which is
is a right triangle with legs
and
;
its area is half the product of its legs, which is
The shaded region is the former triangle removed from the latter triangle; its area is the difference of the two: .
Compare your answer with the correct one above

The above hexagon is regular. Give its area.
The above hexagon is regular. Give its area.
A regular hexagon can be divided into six triangles, each of which can be easily proved equilateral, as seen in the diagram below:

All segments shown are congruent, and, since the diameter shown in the original diagram is 4, each sidelength is half this, or 2.
Each equilateral triangle has area
.
There are six such triangles, so the total area of the hexagon is six times this, or
.
A regular hexagon can be divided into six triangles, each of which can be easily proved equilateral, as seen in the diagram below:
All segments shown are congruent, and, since the diameter shown in the original diagram is 4, each sidelength is half this, or 2.
Each equilateral triangle has area
.
There are six such triangles, so the total area of the hexagon is six times this, or .
Compare your answer with the correct one above
Give the area of a regular hexagon with perimeter 36.
Give the area of a regular hexagon with perimeter 36.
A hexagon has six sides; a regular hexagon with perimeter 36 has sidelength
.
A regular hexagon can be divided into six triangles, each of which can be easily proved equilateral, as seen in the diagram below:

Each equilateral triangle has sidelength 6, so each has area
.
The total area of the hexagon is the area of six such triangles:

A hexagon has six sides; a regular hexagon with perimeter 36 has sidelength
.
A regular hexagon can be divided into six triangles, each of which can be easily proved equilateral, as seen in the diagram below:
Each equilateral triangle has sidelength 6, so each has area
.
The total area of the hexagon is the area of six such triangles:
Compare your answer with the correct one above
Determine the area of a square with a side length of
.
Determine the area of a square with a side length of .
Write the area of a square.

Substitute the side into the formula.

The answer is: 
Write the area of a square.
Substitute the side into the formula.
The answer is:
Compare your answer with the correct one above

Figure NOT drawn to scale.
Refer to the above figure. Every angle shown is a right angle.
Give its area.
Figure NOT drawn to scale.
Refer to the above figure. Every angle shown is a right angle.
Give its area.
Examine the bottom figure, in which the bottom two sides have been connected. Note that the figure is now a rectangle cut out of a rectangle, and, since the opposite sides of a rectangle have the same length, we can fill in some of the side lengths as shown:

The figure is a 60-by-40 rectangle cut from a 100-by-100 square, so, to get the area of the figure, subtract the area of the former from that of the latter. The area of a rectangle is equal to the product of its dimensions, so the areas of the rectangle and the square are, respectively,

and
,
making the area of the figure
.
Examine the bottom figure, in which the bottom two sides have been connected. Note that the figure is now a rectangle cut out of a rectangle, and, since the opposite sides of a rectangle have the same length, we can fill in some of the side lengths as shown:
The figure is a 60-by-40 rectangle cut from a 100-by-100 square, so, to get the area of the figure, subtract the area of the former from that of the latter. The area of a rectangle is equal to the product of its dimensions, so the areas of the rectangle and the square are, respectively,
and
,
making the area of the figure
.
Compare your answer with the correct one above
A circle is inscribed in square that has a side length of
, as shown by the figure below.

Find the area of the shaded region. Use
.
A circle is inscribed in square that has a side length of , as shown by the figure below.
Find the area of the shaded region. Use .

Since the circle is inscribed in the square, the diameter of the circle is the same length as the length of a square.
Start by finding the area of the square.

For the given square,

Now, because the diameter of the circle is the same as the length of a side of the square, we now also know that the radius of the circle must be
. Next recall how to find the area of a circle.

Plug in the found radius to find the area of the circle.

Now, the shaded area is the area left over when the area of the circle is subtracted from the area of the square. Thus, we can write the following equation to find the area of the shaded region.

Since the circle is inscribed in the square, the diameter of the circle is the same length as the length of a square.
Start by finding the area of the square.
For the given square,
Now, because the diameter of the circle is the same as the length of a side of the square, we now also know that the radius of the circle must be . Next recall how to find the area of a circle.
Plug in the found radius to find the area of the circle.
Now, the shaded area is the area left over when the area of the circle is subtracted from the area of the square. Thus, we can write the following equation to find the area of the shaded region.
Compare your answer with the correct one above
Josh wants to build a circular pool in his square yard that measures
feet on each side. He wants to build the pool as big as possible, then pave the rest of his yard in tile. In square feet, what is the area of the yard that will be tiled? Round your answer to the nearest tenths place.
Josh wants to build a circular pool in his square yard that measures feet on each side. He wants to build the pool as big as possible, then pave the rest of his yard in tile. In square feet, what is the area of the yard that will be tiled? Round your answer to the nearest tenths place.
Start by drawing out the square yard and the circular pool in a way that maximizes the area of the pool.

Notice that the diameter of the pool will be the same length as the side of the square.
Since the question asks about the area that is left over after the pool is built, we can find that area by subtracting the area of the pool from the area of the square.
Start by finding the area of the square.

Next, find the area of the circular pool.
Since the diameter of the pool is
, the radius of the pool must be
. Recall how to find the area of a circle:

Plug in the radius of the circle.

Subtract the area of the circle from that of the square.

Start by drawing out the square yard and the circular pool in a way that maximizes the area of the pool.
Notice that the diameter of the pool will be the same length as the side of the square.
Since the question asks about the area that is left over after the pool is built, we can find that area by subtracting the area of the pool from the area of the square.
Start by finding the area of the square.
Next, find the area of the circular pool.
Since the diameter of the pool is , the radius of the pool must be
. Recall how to find the area of a circle:
Plug in the radius of the circle.
Subtract the area of the circle from that of the square.
Compare your answer with the correct one above
A circular swimming pool at an apartment complex has diameter 18 meters and depth 2.5 meters throughout.
The apartment manager needs to get the interior of the swimming pool painted. The paint she wants to use covers 40 square meters per can. How many cans of paint will she need to purchase?
You may use 3.14 for
.
A circular swimming pool at an apartment complex has diameter 18 meters and depth 2.5 meters throughout.
The apartment manager needs to get the interior of the swimming pool painted. The paint she wants to use covers 40 square meters per can. How many cans of paint will she need to purchase?
You may use 3.14 for .
The pool can be seen as a cylinder with depth (or height) 2.5 meters and a base with diameter 18 meters - and radius half this, or 9 meters.
The bottom of the pool - the base of the cylinder - is a circle with radius 9 meters, so its area is
square meters.
Its side - the lateral face of the cylinder - has area
square meters.
Their sum - the total area to be painted - is
square feet. Since one can of paint covers 40 square meters, divide:

Nine cans of paint and part of a tenth will be required, so the correct response is ten.
The pool can be seen as a cylinder with depth (or height) 2.5 meters and a base with diameter 18 meters - and radius half this, or 9 meters.
The bottom of the pool - the base of the cylinder - is a circle with radius 9 meters, so its area is
square meters.
Its side - the lateral face of the cylinder - has area
square meters.
Their sum - the total area to be painted - is square feet. Since one can of paint covers 40 square meters, divide:
Nine cans of paint and part of a tenth will be required, so the correct response is ten.
Compare your answer with the correct one above
A regular icosahedron has twenty congruent faces, each of which is an equilateral triangle.
A given regular icosahedron has edges of length two inches. Give the total surface area of the icosahedron.
A regular icosahedron has twenty congruent faces, each of which is an equilateral triangle.
A given regular icosahedron has edges of length two inches. Give the total surface area of the icosahedron.
The area of an equilateral triangle is given by the formula
.
Since there are twenty equilateral triangles that comprise the surface of the icosahedron, the total surface area is
.
Substitute
:
square inches.
The area of an equilateral triangle is given by the formula
.
Since there are twenty equilateral triangles that comprise the surface of the icosahedron, the total surface area is
.
Substitute :
square inches.
Compare your answer with the correct one above
A regular octahedron has eight congruent faces, each of which is an equilateral triangle.
A given octahedron has edges of length three inches. Give the total surface area of the octahedron.
A regular octahedron has eight congruent faces, each of which is an equilateral triangle.
A given octahedron has edges of length three inches. Give the total surface area of the octahedron.
The area of an equilateral triangle is given by the formula
.
Since there are eight equilateral triangles that comprise the surface of the octahedron, the total surface area is
.
Substitute
:
square inches.
The area of an equilateral triangle is given by the formula
.
Since there are eight equilateral triangles that comprise the surface of the octahedron, the total surface area is
.
Substitute :
square inches.
Compare your answer with the correct one above
A regular tetrahedron has four congruent faces, each of which is an equilateral triangle.
A given tetrahedron has edges of length five inches. Give the total surface area of the tetrahedron.
A regular tetrahedron has four congruent faces, each of which is an equilateral triangle.
A given tetrahedron has edges of length five inches. Give the total surface area of the tetrahedron.
The area of an equilateral triangle is given by the formula
.
Since there are four equilateral triangles that comprise the surface of the tetrahedron, the total surface area is
.
Substitute
:
square inches.
The area of an equilateral triangle is given by the formula
.
Since there are four equilateral triangles that comprise the surface of the tetrahedron, the total surface area is
.
Substitute :
square inches.
Compare your answer with the correct one above
A water tank takes the shape of a sphere whose exterior has radius 24 feet; the tank is six inches thick throughout. To the nearest hundred, give the surface area of the interior of the tank in square feet.
Use 3.14 for
.
A water tank takes the shape of a sphere whose exterior has radius 24 feet; the tank is six inches thick throughout. To the nearest hundred, give the surface area of the interior of the tank in square feet.
Use 3.14 for .
Six inches is equal to 0.5 feet, so the radius of the interior of the tank is
feet.
The surface area of the interior of the tank can be calculated using the formula

,
which rounds to 6,900 square feet.
Six inches is equal to 0.5 feet, so the radius of the interior of the tank is
feet.
The surface area of the interior of the tank can be calculated using the formula
,
which rounds to 6,900 square feet.
Compare your answer with the correct one above
A water tank takes the shape of a closed cylinder whose exterior has a height of 40 feet and a base with radius 15 feet; the tank is three inches thick throughout. To the nearest hundred, give the surface area of the interior of the tank in square feet.
Use 3.14 for
.
A water tank takes the shape of a closed cylinder whose exterior has a height of 40 feet and a base with radius 15 feet; the tank is three inches thick throughout. To the nearest hundred, give the surface area of the interior of the tank in square feet.
Use 3.14 for .
Three inches is equal to 0.25 feet, so the height of the interior of the tank is
feet.
The radius of the interior of the tank is
feet.
The surface area of the interior of the tank can be determined by using this formula:


,
which rounds to 5,000 square feet.
Three inches is equal to 0.25 feet, so the height of the interior of the tank is
feet.
The radius of the interior of the tank is
feet.
The surface area of the interior of the tank can be determined by using this formula:
,
which rounds to 5,000 square feet.
Compare your answer with the correct one above

Give the total surface area of the above cone to the nearest square meter.
Give the total surface area of the above cone to the nearest square meter.
The base is a circle with radius
, and its area can be calculated using the area formula for a circle:
square meters.
To find the lateral area, we need the slant height of the cone. This can be found by way of the Pythagorean Theorem. Treating the height
and the radius
as the legs and slant height
as the hypotenuse, calculate:


meters.
The formula for the lateral area can be applied now:

Add the base and the lateral area to obtain the total surface area:
.
This rounds to 186 square meters.
The base is a circle with radius , and its area can be calculated using the area formula for a circle:
square meters.
To find the lateral area, we need the slant height of the cone. This can be found by way of the Pythagorean Theorem. Treating the height and the radius
as the legs and slant height
as the hypotenuse, calculate:
meters.
The formula for the lateral area can be applied now:
Add the base and the lateral area to obtain the total surface area:
.
This rounds to 186 square meters.
Compare your answer with the correct one above

Above is a diagram of a conic tank that holds a city's water supply.
The city wishes to completely repaint the exterior of the tank - sides and base. The paint it wants to use covers 40 square meters per gallon. Also, to save money, the city buys the paint in multiples of 25 gallons.
How many gallons will the city purchase in order to paint the tower?
Above is a diagram of a conic tank that holds a city's water supply.
The city wishes to completely repaint the exterior of the tank - sides and base. The paint it wants to use covers 40 square meters per gallon. Also, to save money, the city buys the paint in multiples of 25 gallons.
How many gallons will the city purchase in order to paint the tower?
The surface area of a cone with radius
and slant height
is calculated using the formula
.
Substitute 35 for
and 100 for
to find the surface area in square meters:



square meters.
The paint covers 40 square meters per gallon, so the city needs
gallons of paint.
Since the city buys the paint in multiples of 25 gallons, it will need to buy the next-highest multiple of 25, or 375 gallons.
The surface area of a cone with radius and slant height
is calculated using the formula
.
Substitute 35 for and 100 for
to find the surface area in square meters:
square meters.
The paint covers 40 square meters per gallon, so the city needs
gallons of paint.
Since the city buys the paint in multiples of 25 gallons, it will need to buy the next-highest multiple of 25, or 375 gallons.
Compare your answer with the correct one above
A cube has a height of 9cm. Find the surface area.
A cube has a height of 9cm. Find the surface area.
To find the surface area of a cube, we will use the following formula:

where l is the length, and w is the width of the cube.
Now, we know the height of the cube is 9cm. Because it is a cube, all lengths, widths, and heights are the same. Therefore, the length and the width are also 9cm.
Knowing this, we can substitute into the formula. We get



To find the surface area of a cube, we will use the following formula:
where l is the length, and w is the width of the cube.
Now, we know the height of the cube is 9cm. Because it is a cube, all lengths, widths, and heights are the same. Therefore, the length and the width are also 9cm.
Knowing this, we can substitute into the formula. We get
Compare your answer with the correct one above
A sphere has a radius of 7in. Find the surface area.
A sphere has a radius of 7in. Find the surface area.
To find the surface area of a sphere, we will use the following formula:

where r is the radius of the sphere.
Now, we know the radius of the sphere is 7in.
So, we can substitute into the formula. We get




To find the surface area of a sphere, we will use the following formula:
where r is the radius of the sphere.
Now, we know the radius of the sphere is 7in.
So, we can substitute into the formula. We get
Compare your answer with the correct one above
Find the surface area of a cube with a length of 12in.
Find the surface area of a cube with a length of 12in.
To find the surface area of a cube, we will use the following formula:

where l is the length, and w is the width of the cube.
Now, we know the length of the cube is 12in. Because it is a cube, all sides are equal. Therefore, the width is also 12in. So, we can substitute. We get



To find the surface area of a cube, we will use the following formula:
where l is the length, and w is the width of the cube.
Now, we know the length of the cube is 12in. Because it is a cube, all sides are equal. Therefore, the width is also 12in. So, we can substitute. We get
Compare your answer with the correct one above
A cube has a height of 8cm. Find the surface area.
A cube has a height of 8cm. Find the surface area.
To find the surface area of a cube, we will use the following formula:

where l is the length, and w is the width of the cube.
Now, we know the height of the cube is 8cm. Because it is a cube, all lengths, widths, and heights are the same. Therefore, the length and the width are also 8cm.
Knowing this, we can substitute into the formula. We get



To find the surface area of a cube, we will use the following formula:
where l is the length, and w is the width of the cube.
Now, we know the height of the cube is 8cm. Because it is a cube, all lengths, widths, and heights are the same. Therefore, the length and the width are also 8cm.
Knowing this, we can substitute into the formula. We get
Compare your answer with the correct one above