Quadratic Equation - GRE Quantitative Reasoning
Card 0 of 312
Solve: x2+6x+9=0
Solve: x2+6x+9=0
Given a quadratic equation equal to zero you can factor the equation and set each factor equal to zero. To factor you have to find two numbers that multiply to make 9 and add to make 6. The number is 3. So the factored form of the problem is (x+3)(x+3)=0. This statement is true only when x+3=0. Solving for x gives x=-3. Since this problem is multiple choice, you could also plug the given answers into the equation to see which one works.
Given a quadratic equation equal to zero you can factor the equation and set each factor equal to zero. To factor you have to find two numbers that multiply to make 9 and add to make 6. The number is 3. So the factored form of the problem is (x+3)(x+3)=0. This statement is true only when x+3=0. Solving for x gives x=-3. Since this problem is multiple choice, you could also plug the given answers into the equation to see which one works.
Compare your answer with the correct one above
The difference between a number and its square is 72. What is the number?
The difference between a number and its square is 72. What is the number?
x2 – x = 72. Solve for x using the quadratic formula and x = 9 and –8. Only 9 satisfies the restrictions.
x2 – x = 72. Solve for x using the quadratic formula and x = 9 and –8. Only 9 satisfies the restrictions.
Compare your answer with the correct one above
Solve for x: x2 + 4x = 5
Solve for x: x2 + 4x = 5
Solve by factoring. First get everything into the form Ax2 + Bx + C = 0:
x2 + 4x - 5 = 0
Then factor: (x + 5) (x - 1) = 0
Solve each multiple separately for 0:
X + 5 = 0; x = -5
x - 1 = 0; x = 1
Therefore, x is either -5 or 1
Solve by factoring. First get everything into the form Ax2 + Bx + C = 0:
x2 + 4x - 5 = 0
Then factor: (x + 5) (x - 1) = 0
Solve each multiple separately for 0:
X + 5 = 0; x = -5
x - 1 = 0; x = 1
Therefore, x is either -5 or 1
Compare your answer with the correct one above
If x > 0, what values of x satisfy the inequality _x_2 > x?
If x > 0, what values of x satisfy the inequality _x_2 > x?
There are two values where _x_2 = x, namely x = 0 and x = 1. All values between 0 and 1 get smaller after squaring. All values greater than 1 get larger after squaring.
There are two values where _x_2 = x, namely x = 0 and x = 1. All values between 0 and 1 get smaller after squaring. All values greater than 1 get larger after squaring.
Compare your answer with the correct one above
I. real
II. rational
III. distinct
Which of the descriptions characterizes the solutions of the equation 2x2 – 6x + 3 = 0?
I. real
II. rational
III. distinct
Which of the descriptions characterizes the solutions of the equation 2x2 – 6x + 3 = 0?
The equation in the problem is quadratic, so we can use the quadratic formula to solve it. If an equation is in the form _ax_2 + bx + c = 0, where a, b, and c are constants, then the quadratic formula, given below, gives us the solutions of x.
![]()
In this particular problem, a = 2, b = –6, and c = 3.
The value under the square-root, b_2 – 4_ac, is called the discriminant, and it gives us important information about the nature of the solutions of a quadratic equation.
If the discriminant is less than zero, then the roots are not real, because we would be forced to take the square root of a negative number, which yields an imaginary result. The discriminant of the equation we are given is (–6)2 – 4(2)(3) = 36 – 24 = 12 > 0. Because the discriminant is not negative, the solutions to the equation will be real. Thus, option I is correct.
The discriminant can also tell us whether the solutions of an equation are rational or not. If we take the square root of the discriminant and get a rational number, then the solutions of the equation must be rational. In this problem, we would need to take the square root of 12. However, 12 is not a perfect square, so taking its square root would produce an irrational number. Therefore, the solutions to the equation in the problem cannot be rational. This means that choice II is incorrect.
Lastly, the discriminant tells us if the roots to an equation are distinct (different from one another). If the discriminant is equal to zero, then the solutions of x become (–b + 0)/2_a_ and (–b – 0)/2_a_, because the square root of zero is 0. Notice that (–b + 0)/2_a_ is the same as (–b – 0)/2_a_. Thus, if the discriminant is zero, then the roots of the equation are the same, i.e. indistinct. In this particular problem, the discriminant = 12, which doesn't equal zero. This means that the two roots will be different, i.e. distinct. Therefore, choice III applies.
The answer is choices I and III only.
The equation in the problem is quadratic, so we can use the quadratic formula to solve it. If an equation is in the form _ax_2 + bx + c = 0, where a, b, and c are constants, then the quadratic formula, given below, gives us the solutions of x.
In this particular problem, a = 2, b = –6, and c = 3.
The value under the square-root, b_2 – 4_ac, is called the discriminant, and it gives us important information about the nature of the solutions of a quadratic equation.
If the discriminant is less than zero, then the roots are not real, because we would be forced to take the square root of a negative number, which yields an imaginary result. The discriminant of the equation we are given is (–6)2 – 4(2)(3) = 36 – 24 = 12 > 0. Because the discriminant is not negative, the solutions to the equation will be real. Thus, option I is correct.
The discriminant can also tell us whether the solutions of an equation are rational or not. If we take the square root of the discriminant and get a rational number, then the solutions of the equation must be rational. In this problem, we would need to take the square root of 12. However, 12 is not a perfect square, so taking its square root would produce an irrational number. Therefore, the solutions to the equation in the problem cannot be rational. This means that choice II is incorrect.
Lastly, the discriminant tells us if the roots to an equation are distinct (different from one another). If the discriminant is equal to zero, then the solutions of x become (–b + 0)/2_a_ and (–b – 0)/2_a_, because the square root of zero is 0. Notice that (–b + 0)/2_a_ is the same as (–b – 0)/2_a_. Thus, if the discriminant is zero, then the roots of the equation are the same, i.e. indistinct. In this particular problem, the discriminant = 12, which doesn't equal zero. This means that the two roots will be different, i.e. distinct. Therefore, choice III applies.
The answer is choices I and III only.
Compare your answer with the correct one above
Solve: x2+6x+9=0
Solve: x2+6x+9=0
Given a quadratic equation equal to zero you can factor the equation and set each factor equal to zero. To factor you have to find two numbers that multiply to make 9 and add to make 6. The number is 3. So the factored form of the problem is (x+3)(x+3)=0. This statement is true only when x+3=0. Solving for x gives x=-3. Since this problem is multiple choice, you could also plug the given answers into the equation to see which one works.
Given a quadratic equation equal to zero you can factor the equation and set each factor equal to zero. To factor you have to find two numbers that multiply to make 9 and add to make 6. The number is 3. So the factored form of the problem is (x+3)(x+3)=0. This statement is true only when x+3=0. Solving for x gives x=-3. Since this problem is multiple choice, you could also plug the given answers into the equation to see which one works.
Compare your answer with the correct one above
The difference between a number and its square is 72. What is the number?
The difference between a number and its square is 72. What is the number?
x2 – x = 72. Solve for x using the quadratic formula and x = 9 and –8. Only 9 satisfies the restrictions.
x2 – x = 72. Solve for x using the quadratic formula and x = 9 and –8. Only 9 satisfies the restrictions.
Compare your answer with the correct one above
Solve for x: x2 + 4x = 5
Solve for x: x2 + 4x = 5
Solve by factoring. First get everything into the form Ax2 + Bx + C = 0:
x2 + 4x - 5 = 0
Then factor: (x + 5) (x - 1) = 0
Solve each multiple separately for 0:
X + 5 = 0; x = -5
x - 1 = 0; x = 1
Therefore, x is either -5 or 1
Solve by factoring. First get everything into the form Ax2 + Bx + C = 0:
x2 + 4x - 5 = 0
Then factor: (x + 5) (x - 1) = 0
Solve each multiple separately for 0:
X + 5 = 0; x = -5
x - 1 = 0; x = 1
Therefore, x is either -5 or 1
Compare your answer with the correct one above
If x > 0, what values of x satisfy the inequality _x_2 > x?
If x > 0, what values of x satisfy the inequality _x_2 > x?
There are two values where _x_2 = x, namely x = 0 and x = 1. All values between 0 and 1 get smaller after squaring. All values greater than 1 get larger after squaring.
There are two values where _x_2 = x, namely x = 0 and x = 1. All values between 0 and 1 get smaller after squaring. All values greater than 1 get larger after squaring.
Compare your answer with the correct one above
I. real
II. rational
III. distinct
Which of the descriptions characterizes the solutions of the equation 2x2 – 6x + 3 = 0?
I. real
II. rational
III. distinct
Which of the descriptions characterizes the solutions of the equation 2x2 – 6x + 3 = 0?
The equation in the problem is quadratic, so we can use the quadratic formula to solve it. If an equation is in the form _ax_2 + bx + c = 0, where a, b, and c are constants, then the quadratic formula, given below, gives us the solutions of x.
![]()
In this particular problem, a = 2, b = –6, and c = 3.
The value under the square-root, b_2 – 4_ac, is called the discriminant, and it gives us important information about the nature of the solutions of a quadratic equation.
If the discriminant is less than zero, then the roots are not real, because we would be forced to take the square root of a negative number, which yields an imaginary result. The discriminant of the equation we are given is (–6)2 – 4(2)(3) = 36 – 24 = 12 > 0. Because the discriminant is not negative, the solutions to the equation will be real. Thus, option I is correct.
The discriminant can also tell us whether the solutions of an equation are rational or not. If we take the square root of the discriminant and get a rational number, then the solutions of the equation must be rational. In this problem, we would need to take the square root of 12. However, 12 is not a perfect square, so taking its square root would produce an irrational number. Therefore, the solutions to the equation in the problem cannot be rational. This means that choice II is incorrect.
Lastly, the discriminant tells us if the roots to an equation are distinct (different from one another). If the discriminant is equal to zero, then the solutions of x become (–b + 0)/2_a_ and (–b – 0)/2_a_, because the square root of zero is 0. Notice that (–b + 0)/2_a_ is the same as (–b – 0)/2_a_. Thus, if the discriminant is zero, then the roots of the equation are the same, i.e. indistinct. In this particular problem, the discriminant = 12, which doesn't equal zero. This means that the two roots will be different, i.e. distinct. Therefore, choice III applies.
The answer is choices I and III only.
The equation in the problem is quadratic, so we can use the quadratic formula to solve it. If an equation is in the form _ax_2 + bx + c = 0, where a, b, and c are constants, then the quadratic formula, given below, gives us the solutions of x.
In this particular problem, a = 2, b = –6, and c = 3.
The value under the square-root, b_2 – 4_ac, is called the discriminant, and it gives us important information about the nature of the solutions of a quadratic equation.
If the discriminant is less than zero, then the roots are not real, because we would be forced to take the square root of a negative number, which yields an imaginary result. The discriminant of the equation we are given is (–6)2 – 4(2)(3) = 36 – 24 = 12 > 0. Because the discriminant is not negative, the solutions to the equation will be real. Thus, option I is correct.
The discriminant can also tell us whether the solutions of an equation are rational or not. If we take the square root of the discriminant and get a rational number, then the solutions of the equation must be rational. In this problem, we would need to take the square root of 12. However, 12 is not a perfect square, so taking its square root would produce an irrational number. Therefore, the solutions to the equation in the problem cannot be rational. This means that choice II is incorrect.
Lastly, the discriminant tells us if the roots to an equation are distinct (different from one another). If the discriminant is equal to zero, then the solutions of x become (–b + 0)/2_a_ and (–b – 0)/2_a_, because the square root of zero is 0. Notice that (–b + 0)/2_a_ is the same as (–b – 0)/2_a_. Thus, if the discriminant is zero, then the roots of the equation are the same, i.e. indistinct. In this particular problem, the discriminant = 12, which doesn't equal zero. This means that the two roots will be different, i.e. distinct. Therefore, choice III applies.
The answer is choices I and III only.
Compare your answer with the correct one above
Solve for x: x2 = 45 - 12x
Solve for x: x2 = 45 - 12x
For quadratic equations, you need get the equation into the form:
Ax2 + Bx + C = 0. Therefore subtract 45 and add 12 x to both sides of x2 = 45 - 12x. This will give you:
x2 +12x - 45 = 0
Following this, you must factor the quadratic element. Since C is negative, your groups will have to be positive and negative. We know that 45 factors into: 1 * 45, 5 * 9, and 15 * 3. The correct pair is 15 and 3.
(x + 15) (x - 3) = 0
Now, we set each of these factors equal to 0 since we know that if either is 0, the whole equation will be zero (hence solving for the correct value of x):
x + 15 = 0; x = -15
x - 3 = 0; x = 3
Therefore x is -15 or 3.
For quadratic equations, you need get the equation into the form:
Ax2 + Bx + C = 0. Therefore subtract 45 and add 12 x to both sides of x2 = 45 - 12x. This will give you:
x2 +12x - 45 = 0
Following this, you must factor the quadratic element. Since C is negative, your groups will have to be positive and negative. We know that 45 factors into: 1 * 45, 5 * 9, and 15 * 3. The correct pair is 15 and 3.
(x + 15) (x - 3) = 0
Now, we set each of these factors equal to 0 since we know that if either is 0, the whole equation will be zero (hence solving for the correct value of x):
x + 15 = 0; x = -15
x - 3 = 0; x = 3
Therefore x is -15 or 3.
Compare your answer with the correct one above
36x2 -12x - 15 = 0
Solve for x
36x2 -12x - 15 = 0
Solve for x
36x2 - 12x - 15 = 0
Factor the equation:
(6x + 3)(6x - 5) = 0
Set each side equal to zero
6x + 3 = 0
x = -3/6 = -1/2
6x – 5 = 0
x = 5/6
36x2 - 12x - 15 = 0
Factor the equation:
(6x + 3)(6x - 5) = 0
Set each side equal to zero
6x + 3 = 0
x = -3/6 = -1/2
6x – 5 = 0
x = 5/6
Compare your answer with the correct one above
64x2 + 24x - 10 = 0
Solve for x
64x2 + 24x - 10 = 0
Solve for x
64x2 + 24x - 10 = 0
Factor the equation:
(8x + 5)(8x – 2) = 0
Set each side equal to zero
(8x + 5) = 0
x = -5/8
(8x – 2) = 0
x = 2/8 = 1/4
64x2 + 24x - 10 = 0
Factor the equation:
(8x + 5)(8x – 2) = 0
Set each side equal to zero
(8x + 5) = 0
x = -5/8
(8x – 2) = 0
x = 2/8 = 1/4
Compare your answer with the correct one above
All of the following functions have a exactly one root EXCEPT:
All of the following functions have a exactly one root EXCEPT:
The roots of an equation are the points at which the function equals zero. We can set each function equal to zero and determine which functions have one root, and which does not.
Another piece of information will help. If a quadratic function has one root, then it must be a perfect square. This is because a quadratic function that is a perfect square can be written in the form (x – a)2. If we set (x – a)2 = 0 in order to find the root, we see that a is the only value that solves the equation, and thus a is the only root. Additionally, a quadratic equation is a perfect square if it can be written in the form a2x2 + 2abx + b2 = (ax + b)2.
Let's examine the choice f(x) = 4x2 – 4x+1. To find the roots, we set f(x) = 0.
4x2 – 4x+1 = 0
We notice that 4x2 - 4x + 1 is a perfect square, since we could write it as (2x – 1)2. Thus, this equation has only one root, and it can't be the answer.
If we look at f(x) = x2 –2x + 1, we see that x2 – 2x + 1 is also a perfect square, because it could be written as (x – 1)2. This function also has a single root.
Next, we examine f(x) = (1/4)x2 + x + 1. Let us set f(x) = (1/4)x2 + x + 1 = 0.
(1/4)x2 + x + 1 = 0
We can multiply both sides by four to get rid of the fraction.
x2 + 4x + 4 = 0
(x + 2)2 = 0
This function is also a perfect square and has a single root.
Now consider the choice f(x) = (–1/9)x2 + 6x – 81.
f(x) = (–1/9)x2 + 6x – 81 = 0
Multiply both sides by –9.
x2 – 54x + 729 = 0
(x – 27)2 = 0.
Finally, let's look at f(x) = 9x2 – 6x + 4. This CANNOT be written as a perfect square, because it is not in the form a2x2 + 2abx + b2 = (ax + b)2. It might be tempting to think that 9x2 - 6x + 4 = (3x - 2)2, but it does NOT, because (3x – 2)2 = 9x2 – 12x + 4. Therefore, because 9x2 – 6x + 4 is not a perfect square, it doesn't have exactly one root.
The roots of an equation are the points at which the function equals zero. We can set each function equal to zero and determine which functions have one root, and which does not.
Another piece of information will help. If a quadratic function has one root, then it must be a perfect square. This is because a quadratic function that is a perfect square can be written in the form (x – a)2. If we set (x – a)2 = 0 in order to find the root, we see that a is the only value that solves the equation, and thus a is the only root. Additionally, a quadratic equation is a perfect square if it can be written in the form a2x2 + 2abx + b2 = (ax + b)2.
Let's examine the choice f(x) = 4x2 – 4x+1. To find the roots, we set f(x) = 0.
4x2 – 4x+1 = 0
We notice that 4x2 - 4x + 1 is a perfect square, since we could write it as (2x – 1)2. Thus, this equation has only one root, and it can't be the answer.
If we look at f(x) = x2 –2x + 1, we see that x2 – 2x + 1 is also a perfect square, because it could be written as (x – 1)2. This function also has a single root.
Next, we examine f(x) = (1/4)x2 + x + 1. Let us set f(x) = (1/4)x2 + x + 1 = 0.
(1/4)x2 + x + 1 = 0
We can multiply both sides by four to get rid of the fraction.
x2 + 4x + 4 = 0
(x + 2)2 = 0
This function is also a perfect square and has a single root.
Now consider the choice f(x) = (–1/9)x2 + 6x – 81.
f(x) = (–1/9)x2 + 6x – 81 = 0
Multiply both sides by –9.
x2 – 54x + 729 = 0
(x – 27)2 = 0.
Finally, let's look at f(x) = 9x2 – 6x + 4. This CANNOT be written as a perfect square, because it is not in the form a2x2 + 2abx + b2 = (ax + b)2. It might be tempting to think that 9x2 - 6x + 4 = (3x - 2)2, but it does NOT, because (3x – 2)2 = 9x2 – 12x + 4. Therefore, because 9x2 – 6x + 4 is not a perfect square, it doesn't have exactly one root.
Compare your answer with the correct one above
Find the roots of the equation
.
Find the roots of the equation .
To factor this, we need to find a pair of numbers that multiplies to 6 and sums to 5. The numbers 2 and 3 work. (2 * 3 = 6 and 2 + 3 = 5)
(x + 2)(x + 3) = 0
x = –2 or x = –3
To factor this, we need to find a pair of numbers that multiplies to 6 and sums to 5. The numbers 2 and 3 work. (2 * 3 = 6 and 2 + 3 = 5)
(x + 2)(x + 3) = 0
x = –2 or x = –3
Compare your answer with the correct one above
Which of the following is a root of the function
?
Which of the following is a root of the function ?
The roots of a function are the x intercepts of the function. Whenever a function passes through a point on the x-axis, the value of the function is zero. In other words, to find the roots of a function, we must set the function equal to zero and solve for the possible values of x.

This is a quadratic trinomial. Let's see if we can factor it. (We could use the quadratic formula, but it's easier to factor when we can.)
Because the coefficient in front of the
is not equal to 1, we need to multiply this coefficient by the constant, which is –4. When we mutiply 2 and –4, we get –8. We must now think of two numbers that will multiply to give us –8, but will add to give us –7 (the coefficient in front of the x term). Those two numbers which multiply to give –8 and add to give –7 are –8 and 1. We will now rewrite –7x as –8x + x.

We will then group the first two terms and the last two terms.

We will next factor out a 2_x_ from the first two terms.

Thus, when factored, the original equation becomes (2_x_ + 1)(x – 4) = 0.
We now set each factor equal to zero and solve for x.

Subtract 1 from both sides.
2_x_ = –1
Divide both sides by 2.

Now, we set x – 4 equal to 0.
x – 4 = 0
Add 4 to both sides.
x = 4
The roots of f(x) occur where x =
.
The answer is therefore
.
The roots of a function are the x intercepts of the function. Whenever a function passes through a point on the x-axis, the value of the function is zero. In other words, to find the roots of a function, we must set the function equal to zero and solve for the possible values of x.
This is a quadratic trinomial. Let's see if we can factor it. (We could use the quadratic formula, but it's easier to factor when we can.)
Because the coefficient in front of the is not equal to 1, we need to multiply this coefficient by the constant, which is –4. When we mutiply 2 and –4, we get –8. We must now think of two numbers that will multiply to give us –8, but will add to give us –7 (the coefficient in front of the x term). Those two numbers which multiply to give –8 and add to give –7 are –8 and 1. We will now rewrite –7x as –8x + x.
We will then group the first two terms and the last two terms.
We will next factor out a 2_x_ from the first two terms.
Thus, when factored, the original equation becomes (2_x_ + 1)(x – 4) = 0.
We now set each factor equal to zero and solve for x.
Subtract 1 from both sides.
2_x_ = –1
Divide both sides by 2.
Now, we set x – 4 equal to 0.
x – 4 = 0
Add 4 to both sides.
x = 4
The roots of f(x) occur where x = .
The answer is therefore .
Compare your answer with the correct one above
Given
and
, find the value of
.
Given and
, find the value of
.
We can factor the quadratic equation into
.
Then we can see that
.
Therefore,
becomes
and
.
We can factor the quadratic equation into .
Then we can see that .
Therefore, becomes
and
.
Compare your answer with the correct one above
In the equation
what are the values of
?
In the equation what are the values of
?
To solve, begin by factoring the equation. We know that in our two factors, one will begin with
and one will begin with
. Fiddling with different factors of
(we are looking for two numbers that, when multiplied by
and
separately, will add to
), we come to the following:

(If you are unsure, double check by expanding the equation to match the original)
Now, set the each factor equal to 0:


Do the same for the second factor:


Therefore, our two values of
are
and
.
Alternatively, this problem can be solved by plugging each answer choice into the original equation and finding which set of numbers make the equation equate to 0.
To solve, begin by factoring the equation. We know that in our two factors, one will begin with and one will begin with
. Fiddling with different factors of
(we are looking for two numbers that, when multiplied by
and
separately, will add to
), we come to the following:
(If you are unsure, double check by expanding the equation to match the original)
Now, set the each factor equal to 0:
Do the same for the second factor:
Therefore, our two values of are
and
.
Alternatively, this problem can be solved by plugging each answer choice into the original equation and finding which set of numbers make the equation equate to 0.
Compare your answer with the correct one above
Solve for x: x2 = 45 - 12x
Solve for x: x2 = 45 - 12x
For quadratic equations, you need get the equation into the form:
Ax2 + Bx + C = 0. Therefore subtract 45 and add 12 x to both sides of x2 = 45 - 12x. This will give you:
x2 +12x - 45 = 0
Following this, you must factor the quadratic element. Since C is negative, your groups will have to be positive and negative. We know that 45 factors into: 1 * 45, 5 * 9, and 15 * 3. The correct pair is 15 and 3.
(x + 15) (x - 3) = 0
Now, we set each of these factors equal to 0 since we know that if either is 0, the whole equation will be zero (hence solving for the correct value of x):
x + 15 = 0; x = -15
x - 3 = 0; x = 3
Therefore x is -15 or 3.
For quadratic equations, you need get the equation into the form:
Ax2 + Bx + C = 0. Therefore subtract 45 and add 12 x to both sides of x2 = 45 - 12x. This will give you:
x2 +12x - 45 = 0
Following this, you must factor the quadratic element. Since C is negative, your groups will have to be positive and negative. We know that 45 factors into: 1 * 45, 5 * 9, and 15 * 3. The correct pair is 15 and 3.
(x + 15) (x - 3) = 0
Now, we set each of these factors equal to 0 since we know that if either is 0, the whole equation will be zero (hence solving for the correct value of x):
x + 15 = 0; x = -15
x - 3 = 0; x = 3
Therefore x is -15 or 3.
Compare your answer with the correct one above
36x2 -12x - 15 = 0
Solve for x
36x2 -12x - 15 = 0
Solve for x
36x2 - 12x - 15 = 0
Factor the equation:
(6x + 3)(6x - 5) = 0
Set each side equal to zero
6x + 3 = 0
x = -3/6 = -1/2
6x – 5 = 0
x = 5/6
36x2 - 12x - 15 = 0
Factor the equation:
(6x + 3)(6x - 5) = 0
Set each side equal to zero
6x + 3 = 0
x = -3/6 = -1/2
6x – 5 = 0
x = 5/6
Compare your answer with the correct one above