Gene Regulation - GRE
Card 0 of 80
Which of the following types of RNA have been shown to regulate protein synthesis?
I. lncRNA
II. miRNA
III. tRNA
Which of the following types of RNA have been shown to regulate protein synthesis?
I. lncRNA
II. miRNA
III. tRNA
Protein synthesis can be directly affected by molecules involved in translation, or indirectly by molecules involved in the transcription of mRNA templates.
Transfer RNA (tRNA) is involved in translation and serves the function of bringing amino acids to ribosomes. Due to its important function in translation tRNA, is capable of globally controlling translation and, therefore, is involved in protein regulation.
Long non-coding RNA (lncRNA) has been shown to regulate transcription in a number of ways. One of the most prominent is the existence of a lncRNA (Xist) that inactivates the majority of the extra X-chromosome in human females.
Micro RNA (miRNA) is involved in a process known as RNAi and is capable of controlling the translation of targeted molecules of mRNA.
Protein synthesis can be directly affected by molecules involved in translation, or indirectly by molecules involved in the transcription of mRNA templates.
Transfer RNA (tRNA) is involved in translation and serves the function of bringing amino acids to ribosomes. Due to its important function in translation tRNA, is capable of globally controlling translation and, therefore, is involved in protein regulation.
Long non-coding RNA (lncRNA) has been shown to regulate transcription in a number of ways. One of the most prominent is the existence of a lncRNA (Xist) that inactivates the majority of the extra X-chromosome in human females.
Micro RNA (miRNA) is involved in a process known as RNAi and is capable of controlling the translation of targeted molecules of mRNA.
Compare your answer with the correct one above
X-chromosome inactivation occurs in females in which one X-chromosome is silenced and transcriptionally inactivated. The X-inactive specific transcript (Xist) gene is responsible for mediating this inactivation.
What does Xist encode?
X-chromosome inactivation occurs in females in which one X-chromosome is silenced and transcriptionally inactivated. The X-inactive specific transcript (Xist) gene is responsible for mediating this inactivation.
What does Xist encode?
The correct answer is long non-coding (lnc) RNA. Xist lncRNA coats the X-chromosome from which it is transcribed, effectively silencing that X-chromosome. MicroRNAs are small RNAs (~20 base pairs (bp)) and play a role in RNA silencing and post-transcriptional regulation of gene expression. Short interfering RNAs are double-stranded (20-25 bp) and play a role in post-transcriptional gene silencing. Piwi-interacting RNAs are small non-coding RNAs that interact with piwi proteins in epigenetic and post-transcriptional silencing of genetic elements such as retroposons. While MicroRNAs, siRNAs and Piwi-interacting RNAs all silence genes, the mechanism of X-chromosome inactivation requires Xist lncRNA.
The correct answer is long non-coding (lnc) RNA. Xist lncRNA coats the X-chromosome from which it is transcribed, effectively silencing that X-chromosome. MicroRNAs are small RNAs (~20 base pairs (bp)) and play a role in RNA silencing and post-transcriptional regulation of gene expression. Short interfering RNAs are double-stranded (20-25 bp) and play a role in post-transcriptional gene silencing. Piwi-interacting RNAs are small non-coding RNAs that interact with piwi proteins in epigenetic and post-transcriptional silencing of genetic elements such as retroposons. While MicroRNAs, siRNAs and Piwi-interacting RNAs all silence genes, the mechanism of X-chromosome inactivation requires Xist lncRNA.
Compare your answer with the correct one above
Which of the following types of RNA have been shown to regulate protein synthesis?
I. lncRNA
II. miRNA
III. tRNA
Which of the following types of RNA have been shown to regulate protein synthesis?
I. lncRNA
II. miRNA
III. tRNA
Protein synthesis can be directly affected by molecules involved in translation, or indirectly by molecules involved in the transcription of mRNA templates.
Transfer RNA (tRNA) is involved in translation and serves the function of bringing amino acids to ribosomes. Due to its important function in translation tRNA, is capable of globally controlling translation and, therefore, is involved in protein regulation.
Long non-coding RNA (lncRNA) has been shown to regulate transcription in a number of ways. One of the most prominent is the existence of a lncRNA (Xist) that inactivates the majority of the extra X-chromosome in human females.
Micro RNA (miRNA) is involved in a process known as RNAi and is capable of controlling the translation of targeted molecules of mRNA.
Protein synthesis can be directly affected by molecules involved in translation, or indirectly by molecules involved in the transcription of mRNA templates.
Transfer RNA (tRNA) is involved in translation and serves the function of bringing amino acids to ribosomes. Due to its important function in translation tRNA, is capable of globally controlling translation and, therefore, is involved in protein regulation.
Long non-coding RNA (lncRNA) has been shown to regulate transcription in a number of ways. One of the most prominent is the existence of a lncRNA (Xist) that inactivates the majority of the extra X-chromosome in human females.
Micro RNA (miRNA) is involved in a process known as RNAi and is capable of controlling the translation of targeted molecules of mRNA.
Compare your answer with the correct one above
X-chromosome inactivation occurs in females in which one X-chromosome is silenced and transcriptionally inactivated. The X-inactive specific transcript (Xist) gene is responsible for mediating this inactivation.
What does Xist encode?
X-chromosome inactivation occurs in females in which one X-chromosome is silenced and transcriptionally inactivated. The X-inactive specific transcript (Xist) gene is responsible for mediating this inactivation.
What does Xist encode?
The correct answer is long non-coding (lnc) RNA. Xist lncRNA coats the X-chromosome from which it is transcribed, effectively silencing that X-chromosome. MicroRNAs are small RNAs (~20 base pairs (bp)) and play a role in RNA silencing and post-transcriptional regulation of gene expression. Short interfering RNAs are double-stranded (20-25 bp) and play a role in post-transcriptional gene silencing. Piwi-interacting RNAs are small non-coding RNAs that interact with piwi proteins in epigenetic and post-transcriptional silencing of genetic elements such as retroposons. While MicroRNAs, siRNAs and Piwi-interacting RNAs all silence genes, the mechanism of X-chromosome inactivation requires Xist lncRNA.
The correct answer is long non-coding (lnc) RNA. Xist lncRNA coats the X-chromosome from which it is transcribed, effectively silencing that X-chromosome. MicroRNAs are small RNAs (~20 base pairs (bp)) and play a role in RNA silencing and post-transcriptional regulation of gene expression. Short interfering RNAs are double-stranded (20-25 bp) and play a role in post-transcriptional gene silencing. Piwi-interacting RNAs are small non-coding RNAs that interact with piwi proteins in epigenetic and post-transcriptional silencing of genetic elements such as retroposons. While MicroRNAs, siRNAs and Piwi-interacting RNAs all silence genes, the mechanism of X-chromosome inactivation requires Xist lncRNA.
Compare your answer with the correct one above
Where are promoters typically found in DNA?
Where are promoters typically found in DNA?
Promoters are the sites where transcription factors and RNA polymerase bind to initiate transcription. It makes sense that the promoter would be found upstream of a gene (i.e. before a gene). "Downstream of the coding region" and "in the middle of the coding region" are redundant answers, and neither describes a location where a promoter would normally be located. The 3' UTR describes a region of mRNA and, thus, has nothing to do with promoters.
Promoters are the sites where transcription factors and RNA polymerase bind to initiate transcription. It makes sense that the promoter would be found upstream of a gene (i.e. before a gene). "Downstream of the coding region" and "in the middle of the coding region" are redundant answers, and neither describes a location where a promoter would normally be located. The 3' UTR describes a region of mRNA and, thus, has nothing to do with promoters.
Compare your answer with the correct one above
are regions of DNA, located of a gene, that will increase its expression.
are regions of DNA, located of a gene, that will increase its expression.
As the name suggests, enhancers enhance the expression of a gene; they increase the number of mRNA transcripts produced from said gene. Silencers do the opposite, and repress the expression of a gene by serving as a binding site for repressors. It does not matter exactly how far enhancers are from the gene (either upstream or downstream) as long as they are geometrically close.
As the name suggests, enhancers enhance the expression of a gene; they increase the number of mRNA transcripts produced from said gene. Silencers do the opposite, and repress the expression of a gene by serving as a binding site for repressors. It does not matter exactly how far enhancers are from the gene (either upstream or downstream) as long as they are geometrically close.
Compare your answer with the correct one above
Which of the following does not represent a feature of bacterial transcription that is not found in eukaryotic transcription?
Which of the following does not represent a feature of bacterial transcription that is not found in eukaryotic transcription?
Bacterial RNA polymerase is very similar to eukaryotic RNA Polymerase II in that both have many subunits and form a holoenzyme with cofactors. The rest of the answers are in fact unique to bacterial transcription.
Bacterial RNA polymerase is very similar to eukaryotic RNA Polymerase II in that both have many subunits and form a holoenzyme with cofactors. The rest of the answers are in fact unique to bacterial transcription.
Compare your answer with the correct one above
What proteins enhance transcription by promoting the recruitment of transcription factors and stabilizing the RNA polymerase holoenzyme at the promoter?
What proteins enhance transcription by promoting the recruitment of transcription factors and stabilizing the RNA polymerase holoenzyme at the promoter?
Coactivators increase gene expression by binding to a transcription factor, recruiting other transcription factors and cofactors, and stabilizing the RNA polymerase holoenzyme to ensure that it can pass the promoter and begin transcribing coding sequence. Corepressors repress transcription, while histone methyl/acetlytransferases act on histone proteins. DNA methyltransferases methylate DNA to establish epigenetic marks that generally inhibit transcription.
Coactivators increase gene expression by binding to a transcription factor, recruiting other transcription factors and cofactors, and stabilizing the RNA polymerase holoenzyme to ensure that it can pass the promoter and begin transcribing coding sequence. Corepressors repress transcription, while histone methyl/acetlytransferases act on histone proteins. DNA methyltransferases methylate DNA to establish epigenetic marks that generally inhibit transcription.
Compare your answer with the correct one above
What regulatory element promotes RNA polymerase II binding as well as binding of factors that facilitate the unwinding of DNA prior to translation?
What regulatory element promotes RNA polymerase II binding as well as binding of factors that facilitate the unwinding of DNA prior to translation?
The correct answer is TATA box. Found in about 24% of human gene promoters, this regulatory element is mostly found in genes transcribed by RNA polymerase II, and as such, recruits this enzyme to the promoter. Additionally, the TATA binding protein aids in unwinding DNA.
The correct answer is TATA box. Found in about 24% of human gene promoters, this regulatory element is mostly found in genes transcribed by RNA polymerase II, and as such, recruits this enzyme to the promoter. Additionally, the TATA binding protein aids in unwinding DNA.
Compare your answer with the correct one above
In a hypothetical situation, the enhancer region of gene X, which controls tail length in mice, is mutated such that transcription factors bind to the enhancer region at a much higher efficiency than if the region were wild-type. What is a reasonable phenotypic outcome possible from this mutation in gene X's enhancer region?
In a hypothetical situation, the enhancer region of gene X, which controls tail length in mice, is mutated such that transcription factors bind to the enhancer region at a much higher efficiency than if the region were wild-type. What is a reasonable phenotypic outcome possible from this mutation in gene X's enhancer region?
This question is inspired by a real life example, in which if you put a bat enhancer region in front of the gene that controls limb development in mice, the limbs are longer due to changes in the enhancer activity, which increases the activity of the promoter. By permitting more transcription factor interaction with the regulatory region, one might expect that this type of mutation may increase the tail length of the mouse because more "pro-tail length" protein is being made.
This question is inspired by a real life example, in which if you put a bat enhancer region in front of the gene that controls limb development in mice, the limbs are longer due to changes in the enhancer activity, which increases the activity of the promoter. By permitting more transcription factor interaction with the regulatory region, one might expect that this type of mutation may increase the tail length of the mouse because more "pro-tail length" protein is being made.
Compare your answer with the correct one above
Where are promoters typically found in DNA?
Where are promoters typically found in DNA?
Promoters are the sites where transcription factors and RNA polymerase bind to initiate transcription. It makes sense that the promoter would be found upstream of a gene (i.e. before a gene). "Downstream of the coding region" and "in the middle of the coding region" are redundant answers, and neither describes a location where a promoter would normally be located. The 3' UTR describes a region of mRNA and, thus, has nothing to do with promoters.
Promoters are the sites where transcription factors and RNA polymerase bind to initiate transcription. It makes sense that the promoter would be found upstream of a gene (i.e. before a gene). "Downstream of the coding region" and "in the middle of the coding region" are redundant answers, and neither describes a location where a promoter would normally be located. The 3' UTR describes a region of mRNA and, thus, has nothing to do with promoters.
Compare your answer with the correct one above
are regions of DNA, located of a gene, that will increase its expression.
are regions of DNA, located of a gene, that will increase its expression.
As the name suggests, enhancers enhance the expression of a gene; they increase the number of mRNA transcripts produced from said gene. Silencers do the opposite, and repress the expression of a gene by serving as a binding site for repressors. It does not matter exactly how far enhancers are from the gene (either upstream or downstream) as long as they are geometrically close.
As the name suggests, enhancers enhance the expression of a gene; they increase the number of mRNA transcripts produced from said gene. Silencers do the opposite, and repress the expression of a gene by serving as a binding site for repressors. It does not matter exactly how far enhancers are from the gene (either upstream or downstream) as long as they are geometrically close.
Compare your answer with the correct one above
Which of the following does not represent a feature of bacterial transcription that is not found in eukaryotic transcription?
Which of the following does not represent a feature of bacterial transcription that is not found in eukaryotic transcription?
Bacterial RNA polymerase is very similar to eukaryotic RNA Polymerase II in that both have many subunits and form a holoenzyme with cofactors. The rest of the answers are in fact unique to bacterial transcription.
Bacterial RNA polymerase is very similar to eukaryotic RNA Polymerase II in that both have many subunits and form a holoenzyme with cofactors. The rest of the answers are in fact unique to bacterial transcription.
Compare your answer with the correct one above
What proteins enhance transcription by promoting the recruitment of transcription factors and stabilizing the RNA polymerase holoenzyme at the promoter?
What proteins enhance transcription by promoting the recruitment of transcription factors and stabilizing the RNA polymerase holoenzyme at the promoter?
Coactivators increase gene expression by binding to a transcription factor, recruiting other transcription factors and cofactors, and stabilizing the RNA polymerase holoenzyme to ensure that it can pass the promoter and begin transcribing coding sequence. Corepressors repress transcription, while histone methyl/acetlytransferases act on histone proteins. DNA methyltransferases methylate DNA to establish epigenetic marks that generally inhibit transcription.
Coactivators increase gene expression by binding to a transcription factor, recruiting other transcription factors and cofactors, and stabilizing the RNA polymerase holoenzyme to ensure that it can pass the promoter and begin transcribing coding sequence. Corepressors repress transcription, while histone methyl/acetlytransferases act on histone proteins. DNA methyltransferases methylate DNA to establish epigenetic marks that generally inhibit transcription.
Compare your answer with the correct one above
What regulatory element promotes RNA polymerase II binding as well as binding of factors that facilitate the unwinding of DNA prior to translation?
What regulatory element promotes RNA polymerase II binding as well as binding of factors that facilitate the unwinding of DNA prior to translation?
The correct answer is TATA box. Found in about 24% of human gene promoters, this regulatory element is mostly found in genes transcribed by RNA polymerase II, and as such, recruits this enzyme to the promoter. Additionally, the TATA binding protein aids in unwinding DNA.
The correct answer is TATA box. Found in about 24% of human gene promoters, this regulatory element is mostly found in genes transcribed by RNA polymerase II, and as such, recruits this enzyme to the promoter. Additionally, the TATA binding protein aids in unwinding DNA.
Compare your answer with the correct one above
In a hypothetical situation, the enhancer region of gene X, which controls tail length in mice, is mutated such that transcription factors bind to the enhancer region at a much higher efficiency than if the region were wild-type. What is a reasonable phenotypic outcome possible from this mutation in gene X's enhancer region?
In a hypothetical situation, the enhancer region of gene X, which controls tail length in mice, is mutated such that transcription factors bind to the enhancer region at a much higher efficiency than if the region were wild-type. What is a reasonable phenotypic outcome possible from this mutation in gene X's enhancer region?
This question is inspired by a real life example, in which if you put a bat enhancer region in front of the gene that controls limb development in mice, the limbs are longer due to changes in the enhancer activity, which increases the activity of the promoter. By permitting more transcription factor interaction with the regulatory region, one might expect that this type of mutation may increase the tail length of the mouse because more "pro-tail length" protein is being made.
This question is inspired by a real life example, in which if you put a bat enhancer region in front of the gene that controls limb development in mice, the limbs are longer due to changes in the enhancer activity, which increases the activity of the promoter. By permitting more transcription factor interaction with the regulatory region, one might expect that this type of mutation may increase the tail length of the mouse because more "pro-tail length" protein is being made.
Compare your answer with the correct one above
In regards to the lac operon in the presence of lactose, will the genes be transcribed in large amounts?
In regards to the lac operon in the presence of lactose, will the genes be transcribed in large amounts?
Activation of the lac operon is necessary for the transport and metabolism of lactose sugars by E. coli. Lactose sugars actively work to remove a repressor that statically inhibits transcription; however, high concentrations of glucose (and, thus, low concentrations of cAMP) will prevent these genes from being transcribed rigorously. In order for the lac operon to be active at high levels, lactose must be present and glucose must be absent.
Activation of the lac operon is necessary for the transport and metabolism of lactose sugars by E. coli. Lactose sugars actively work to remove a repressor that statically inhibits transcription; however, high concentrations of glucose (and, thus, low concentrations of cAMP) will prevent these genes from being transcribed rigorously. In order for the lac operon to be active at high levels, lactose must be present and glucose must be absent.
Compare your answer with the correct one above
Which of the following conditions are crucial to maintain high activation of the lac operon?
Which of the following conditions are crucial to maintain high activation of the lac operon?
The lac operon is a system designed to only express particular proteins when the concentration of glucose is low and the concentration of lactose is high. The common cellular response to a low concentration of glucose is to increase the concentration of cAMP in order to activate various alternative metabolic pathways. Both a high concentration of cAMP and a high concentration of lactose are necessary to get sustained expression of the lac operon. When glucose levels begin to rise, the cAMP concentration will begin to fall and the operon function will deteriorate.
The lac operon is a system designed to only express particular proteins when the concentration of glucose is low and the concentration of lactose is high. The common cellular response to a low concentration of glucose is to increase the concentration of cAMP in order to activate various alternative metabolic pathways. Both a high concentration of cAMP and a high concentration of lactose are necessary to get sustained expression of the lac operon. When glucose levels begin to rise, the cAMP concentration will begin to fall and the operon function will deteriorate.
Compare your answer with the correct one above
Which of the following choices best represents the phenotype of a cell containing a mutation in the lac I gene?
Which of the following choices best represents the phenotype of a cell containing a mutation in the lac I gene?
lac I is the gene that encodes for the repressor of the lac operon. If there is no repressor, the cell will constantly express the genes present in the lac operon whether or not the typical conditions are present.
A mutation of the gene encoding
-galactosidase permease (lac Y) would prevent lactose from entering the cell. A mutation in the gene encoding
-galactosidase (lac Z) would prevent the breakdown of lactose. A mutation in the promoter region would prevent RNA polymerase from binding.
lac I is the gene that encodes for the repressor of the lac operon. If there is no repressor, the cell will constantly express the genes present in the lac operon whether or not the typical conditions are present.
A mutation of the gene encoding -galactosidase permease (lac Y) would prevent lactose from entering the cell. A mutation in the gene encoding
-galactosidase (lac Z) would prevent the breakdown of lactose. A mutation in the promoter region would prevent RNA polymerase from binding.
Compare your answer with the correct one above
In prokaryotes, functionally related genes are sometimes position adjacent to each other in the genome and can under the control of the same regulatory machinery. What are these called?
In prokaryotes, functionally related genes are sometimes position adjacent to each other in the genome and can under the control of the same regulatory machinery. What are these called?
Prokaryotic organisms often have functionally related genes joined together on the chromosome under the direction of a single promoter. These structures are called operons. Operons have additional sequences, called operators that can be bound by either repressor or activator proteins, which will repress or activate transcription of the operon. One commonly studied example is the lac operon, whose genes encodes products required for lactose metabolism.
Prokaryotic organisms often have functionally related genes joined together on the chromosome under the direction of a single promoter. These structures are called operons. Operons have additional sequences, called operators that can be bound by either repressor or activator proteins, which will repress or activate transcription of the operon. One commonly studied example is the lac operon, whose genes encodes products required for lactose metabolism.
Compare your answer with the correct one above