Plant Structures - GRE
Card 0 of 56
In plants, leaves contain specialized pores used for gas exchange. Each pore is formed by a pair of cells that control its closing and opening. What are these cells called?
In plants, leaves contain specialized pores used for gas exchange. Each pore is formed by a pair of cells that control its closing and opening. What are these cells called?
For proper functioning, plants must take in carbon dioxide, expel oxygen, and limit the loss of water vapor. This gas exchange takes place via pores called stomata. These pores are formed by a pair of adjacent cells that can open and close in response to a number of factors. These cells are called guard cells.
The cuticle and epidermis are layers of leaf structure, and do not correspond to specific cell types. The stoma is the name of a single pore itself, not its surrounding cells.
For proper functioning, plants must take in carbon dioxide, expel oxygen, and limit the loss of water vapor. This gas exchange takes place via pores called stomata. These pores are formed by a pair of adjacent cells that can open and close in response to a number of factors. These cells are called guard cells.
The cuticle and epidermis are layers of leaf structure, and do not correspond to specific cell types. The stoma is the name of a single pore itself, not its surrounding cells.
Compare your answer with the correct one above
Plant cells differentiate to perform different functions and enable the plant to grow. One cell type is present in young stems and petioles and functions to provide flexible support. This cell type is less resistant to bending forces because it lacks a secondary cell wall and the protein lignin, which causes rigidity in other plant cells.
What differentiated plant cell is being described?
Plant cells differentiate to perform different functions and enable the plant to grow. One cell type is present in young stems and petioles and functions to provide flexible support. This cell type is less resistant to bending forces because it lacks a secondary cell wall and the protein lignin, which causes rigidity in other plant cells.
What differentiated plant cell is being described?
As described in the beginning of this question, collenchyma cells are found in young stems and petioles (leaves) and function to provide flexible support to the plant. This is because chollenchyma cells lack secondary cell walls and do not produce lignin to harden them—this protein is characteristic of sclerenchyma cells, which are also used to provide support/strength to the plant.
Due to their lack of rigidity, collenchyma cells a also capable of elongating with the stems and leaves they support, allowing them to remain alive at maturity. Sclerenchymal cells lack this ability.
As described in the beginning of this question, collenchyma cells are found in young stems and petioles (leaves) and function to provide flexible support to the plant. This is because chollenchyma cells lack secondary cell walls and do not produce lignin to harden them—this protein is characteristic of sclerenchyma cells, which are also used to provide support/strength to the plant.
Due to their lack of rigidity, collenchyma cells a also capable of elongating with the stems and leaves they support, allowing them to remain alive at maturity. Sclerenchymal cells lack this ability.
Compare your answer with the correct one above
Plant cells differentiate to be able to perform different functions and enable it to grow. One cell type has a critical job in supporting the plant. These cells have secondary walls that are further strengthened by a glue-like substance called lignin, which increases the cell's rigidity. At maturity, these cells cannot elongate and are found in regions of the plant that have stopped growing, forming a "skeleton" for the plant.
What type of differentiated plant cell is described?
Plant cells differentiate to be able to perform different functions and enable it to grow. One cell type has a critical job in supporting the plant. These cells have secondary walls that are further strengthened by a glue-like substance called lignin, which increases the cell's rigidity. At maturity, these cells cannot elongate and are found in regions of the plant that have stopped growing, forming a "skeleton" for the plant.
What type of differentiated plant cell is described?
As described in the background to the question, sclerenchyma cells are specialized to support the plant as it grows. These cells have thick secondary walls that are further strengthened by the hardening agent called lignin. As a result, these cells are highly rigid and inflexible.
At maturity, these cells cannot elongate and are found in regions of the plant that have stopped growing. In some parts of the plant, the sclerenchyma cells may even be dead; however, the rigid walls remain and act like a skeleteon that supports the remainder of the plaint over its lifetime.
Sclerenchyma cells can also further differentiate into two types called sclereids and fibers. Sclerids can provide hardness to nut shells. Fibers, as their name suggests, are usually arranged in long threads and have commercial uses, such as being made into rope.
As described in the background to the question, sclerenchyma cells are specialized to support the plant as it grows. These cells have thick secondary walls that are further strengthened by the hardening agent called lignin. As a result, these cells are highly rigid and inflexible.
At maturity, these cells cannot elongate and are found in regions of the plant that have stopped growing. In some parts of the plant, the sclerenchyma cells may even be dead; however, the rigid walls remain and act like a skeleteon that supports the remainder of the plaint over its lifetime.
Sclerenchyma cells can also further differentiate into two types called sclereids and fibers. Sclerids can provide hardness to nut shells. Fibers, as their name suggests, are usually arranged in long threads and have commercial uses, such as being made into rope.
Compare your answer with the correct one above
What is the main structural component of a plant cell wall?
What is the main structural component of a plant cell wall?
Cellulose, a polymer of glucose, is the main component of plant cell walls.
Collagen is found in the connective tissues of animals. Chitin is found in the cell walls of fungi. Actin and myosin are the proteins responsible for contraction in muscle cells; actin is also a microfilament in the cytoskeleton. Peptidoglycan is found in the cell walls of bacteria.
Cellulose, a polymer of glucose, is the main component of plant cell walls.
Collagen is found in the connective tissues of animals. Chitin is found in the cell walls of fungi. Actin and myosin are the proteins responsible for contraction in muscle cells; actin is also a microfilament in the cytoskeleton. Peptidoglycan is found in the cell walls of bacteria.
Compare your answer with the correct one above
What are the protein channels in plants that allow high rates of water flow through the membrane via passive transport?
What are the protein channels in plants that allow high rates of water flow through the membrane via passive transport?
The correct answer is aquaporins. While water can move across a membrane via simple diffusion, these transmembrane proteins increase the flow of water. Remember that water is a polar molecule, and is thus relatively impermeable to the plasma membrane despite its small size.
The correct answer is aquaporins. While water can move across a membrane via simple diffusion, these transmembrane proteins increase the flow of water. Remember that water is a polar molecule, and is thus relatively impermeable to the plasma membrane despite its small size.
Compare your answer with the correct one above
In plants, leaves contain specialized pores used for gas exchange. Each pore is formed by a pair of cells that control its closing and opening. What are these cells called?
In plants, leaves contain specialized pores used for gas exchange. Each pore is formed by a pair of cells that control its closing and opening. What are these cells called?
For proper functioning, plants must take in carbon dioxide, expel oxygen, and limit the loss of water vapor. This gas exchange takes place via pores called stomata. These pores are formed by a pair of adjacent cells that can open and close in response to a number of factors. These cells are called guard cells.
The cuticle and epidermis are layers of leaf structure, and do not correspond to specific cell types. The stoma is the name of a single pore itself, not its surrounding cells.
For proper functioning, plants must take in carbon dioxide, expel oxygen, and limit the loss of water vapor. This gas exchange takes place via pores called stomata. These pores are formed by a pair of adjacent cells that can open and close in response to a number of factors. These cells are called guard cells.
The cuticle and epidermis are layers of leaf structure, and do not correspond to specific cell types. The stoma is the name of a single pore itself, not its surrounding cells.
Compare your answer with the correct one above
Plant cells differentiate to perform different functions and enable the plant to grow. One cell type is present in young stems and petioles and functions to provide flexible support. This cell type is less resistant to bending forces because it lacks a secondary cell wall and the protein lignin, which causes rigidity in other plant cells.
What differentiated plant cell is being described?
Plant cells differentiate to perform different functions and enable the plant to grow. One cell type is present in young stems and petioles and functions to provide flexible support. This cell type is less resistant to bending forces because it lacks a secondary cell wall and the protein lignin, which causes rigidity in other plant cells.
What differentiated plant cell is being described?
As described in the beginning of this question, collenchyma cells are found in young stems and petioles (leaves) and function to provide flexible support to the plant. This is because chollenchyma cells lack secondary cell walls and do not produce lignin to harden them—this protein is characteristic of sclerenchyma cells, which are also used to provide support/strength to the plant.
Due to their lack of rigidity, collenchyma cells a also capable of elongating with the stems and leaves they support, allowing them to remain alive at maturity. Sclerenchymal cells lack this ability.
As described in the beginning of this question, collenchyma cells are found in young stems and petioles (leaves) and function to provide flexible support to the plant. This is because chollenchyma cells lack secondary cell walls and do not produce lignin to harden them—this protein is characteristic of sclerenchyma cells, which are also used to provide support/strength to the plant.
Due to their lack of rigidity, collenchyma cells a also capable of elongating with the stems and leaves they support, allowing them to remain alive at maturity. Sclerenchymal cells lack this ability.
Compare your answer with the correct one above
Plant cells differentiate to be able to perform different functions and enable it to grow. One cell type has a critical job in supporting the plant. These cells have secondary walls that are further strengthened by a glue-like substance called lignin, which increases the cell's rigidity. At maturity, these cells cannot elongate and are found in regions of the plant that have stopped growing, forming a "skeleton" for the plant.
What type of differentiated plant cell is described?
Plant cells differentiate to be able to perform different functions and enable it to grow. One cell type has a critical job in supporting the plant. These cells have secondary walls that are further strengthened by a glue-like substance called lignin, which increases the cell's rigidity. At maturity, these cells cannot elongate and are found in regions of the plant that have stopped growing, forming a "skeleton" for the plant.
What type of differentiated plant cell is described?
As described in the background to the question, sclerenchyma cells are specialized to support the plant as it grows. These cells have thick secondary walls that are further strengthened by the hardening agent called lignin. As a result, these cells are highly rigid and inflexible.
At maturity, these cells cannot elongate and are found in regions of the plant that have stopped growing. In some parts of the plant, the sclerenchyma cells may even be dead; however, the rigid walls remain and act like a skeleteon that supports the remainder of the plaint over its lifetime.
Sclerenchyma cells can also further differentiate into two types called sclereids and fibers. Sclerids can provide hardness to nut shells. Fibers, as their name suggests, are usually arranged in long threads and have commercial uses, such as being made into rope.
As described in the background to the question, sclerenchyma cells are specialized to support the plant as it grows. These cells have thick secondary walls that are further strengthened by the hardening agent called lignin. As a result, these cells are highly rigid and inflexible.
At maturity, these cells cannot elongate and are found in regions of the plant that have stopped growing. In some parts of the plant, the sclerenchyma cells may even be dead; however, the rigid walls remain and act like a skeleteon that supports the remainder of the plaint over its lifetime.
Sclerenchyma cells can also further differentiate into two types called sclereids and fibers. Sclerids can provide hardness to nut shells. Fibers, as their name suggests, are usually arranged in long threads and have commercial uses, such as being made into rope.
Compare your answer with the correct one above
What is the main structural component of a plant cell wall?
What is the main structural component of a plant cell wall?
Cellulose, a polymer of glucose, is the main component of plant cell walls.
Collagen is found in the connective tissues of animals. Chitin is found in the cell walls of fungi. Actin and myosin are the proteins responsible for contraction in muscle cells; actin is also a microfilament in the cytoskeleton. Peptidoglycan is found in the cell walls of bacteria.
Cellulose, a polymer of glucose, is the main component of plant cell walls.
Collagen is found in the connective tissues of animals. Chitin is found in the cell walls of fungi. Actin and myosin are the proteins responsible for contraction in muscle cells; actin is also a microfilament in the cytoskeleton. Peptidoglycan is found in the cell walls of bacteria.
Compare your answer with the correct one above
What are the protein channels in plants that allow high rates of water flow through the membrane via passive transport?
What are the protein channels in plants that allow high rates of water flow through the membrane via passive transport?
The correct answer is aquaporins. While water can move across a membrane via simple diffusion, these transmembrane proteins increase the flow of water. Remember that water is a polar molecule, and is thus relatively impermeable to the plasma membrane despite its small size.
The correct answer is aquaporins. While water can move across a membrane via simple diffusion, these transmembrane proteins increase the flow of water. Remember that water is a polar molecule, and is thus relatively impermeable to the plasma membrane despite its small size.
Compare your answer with the correct one above
In plants, leaves contain specialized pores used for gas exchange. Each pore is formed by a pair of cells that control its closing and opening. What are these cells called?
In plants, leaves contain specialized pores used for gas exchange. Each pore is formed by a pair of cells that control its closing and opening. What are these cells called?
For proper functioning, plants must take in carbon dioxide, expel oxygen, and limit the loss of water vapor. This gas exchange takes place via pores called stomata. These pores are formed by a pair of adjacent cells that can open and close in response to a number of factors. These cells are called guard cells.
The cuticle and epidermis are layers of leaf structure, and do not correspond to specific cell types. The stoma is the name of a single pore itself, not its surrounding cells.
For proper functioning, plants must take in carbon dioxide, expel oxygen, and limit the loss of water vapor. This gas exchange takes place via pores called stomata. These pores are formed by a pair of adjacent cells that can open and close in response to a number of factors. These cells are called guard cells.
The cuticle and epidermis are layers of leaf structure, and do not correspond to specific cell types. The stoma is the name of a single pore itself, not its surrounding cells.
Compare your answer with the correct one above
Plant cells differentiate to perform different functions and enable the plant to grow. One cell type is present in young stems and petioles and functions to provide flexible support. This cell type is less resistant to bending forces because it lacks a secondary cell wall and the protein lignin, which causes rigidity in other plant cells.
What differentiated plant cell is being described?
Plant cells differentiate to perform different functions and enable the plant to grow. One cell type is present in young stems and petioles and functions to provide flexible support. This cell type is less resistant to bending forces because it lacks a secondary cell wall and the protein lignin, which causes rigidity in other plant cells.
What differentiated plant cell is being described?
As described in the beginning of this question, collenchyma cells are found in young stems and petioles (leaves) and function to provide flexible support to the plant. This is because chollenchyma cells lack secondary cell walls and do not produce lignin to harden them—this protein is characteristic of sclerenchyma cells, which are also used to provide support/strength to the plant.
Due to their lack of rigidity, collenchyma cells a also capable of elongating with the stems and leaves they support, allowing them to remain alive at maturity. Sclerenchymal cells lack this ability.
As described in the beginning of this question, collenchyma cells are found in young stems and petioles (leaves) and function to provide flexible support to the plant. This is because chollenchyma cells lack secondary cell walls and do not produce lignin to harden them—this protein is characteristic of sclerenchyma cells, which are also used to provide support/strength to the plant.
Due to their lack of rigidity, collenchyma cells a also capable of elongating with the stems and leaves they support, allowing them to remain alive at maturity. Sclerenchymal cells lack this ability.
Compare your answer with the correct one above
Plant cells differentiate to be able to perform different functions and enable it to grow. One cell type has a critical job in supporting the plant. These cells have secondary walls that are further strengthened by a glue-like substance called lignin, which increases the cell's rigidity. At maturity, these cells cannot elongate and are found in regions of the plant that have stopped growing, forming a "skeleton" for the plant.
What type of differentiated plant cell is described?
Plant cells differentiate to be able to perform different functions and enable it to grow. One cell type has a critical job in supporting the plant. These cells have secondary walls that are further strengthened by a glue-like substance called lignin, which increases the cell's rigidity. At maturity, these cells cannot elongate and are found in regions of the plant that have stopped growing, forming a "skeleton" for the plant.
What type of differentiated plant cell is described?
As described in the background to the question, sclerenchyma cells are specialized to support the plant as it grows. These cells have thick secondary walls that are further strengthened by the hardening agent called lignin. As a result, these cells are highly rigid and inflexible.
At maturity, these cells cannot elongate and are found in regions of the plant that have stopped growing. In some parts of the plant, the sclerenchyma cells may even be dead; however, the rigid walls remain and act like a skeleteon that supports the remainder of the plaint over its lifetime.
Sclerenchyma cells can also further differentiate into two types called sclereids and fibers. Sclerids can provide hardness to nut shells. Fibers, as their name suggests, are usually arranged in long threads and have commercial uses, such as being made into rope.
As described in the background to the question, sclerenchyma cells are specialized to support the plant as it grows. These cells have thick secondary walls that are further strengthened by the hardening agent called lignin. As a result, these cells are highly rigid and inflexible.
At maturity, these cells cannot elongate and are found in regions of the plant that have stopped growing. In some parts of the plant, the sclerenchyma cells may even be dead; however, the rigid walls remain and act like a skeleteon that supports the remainder of the plaint over its lifetime.
Sclerenchyma cells can also further differentiate into two types called sclereids and fibers. Sclerids can provide hardness to nut shells. Fibers, as their name suggests, are usually arranged in long threads and have commercial uses, such as being made into rope.
Compare your answer with the correct one above
What is the main structural component of a plant cell wall?
What is the main structural component of a plant cell wall?
Cellulose, a polymer of glucose, is the main component of plant cell walls.
Collagen is found in the connective tissues of animals. Chitin is found in the cell walls of fungi. Actin and myosin are the proteins responsible for contraction in muscle cells; actin is also a microfilament in the cytoskeleton. Peptidoglycan is found in the cell walls of bacteria.
Cellulose, a polymer of glucose, is the main component of plant cell walls.
Collagen is found in the connective tissues of animals. Chitin is found in the cell walls of fungi. Actin and myosin are the proteins responsible for contraction in muscle cells; actin is also a microfilament in the cytoskeleton. Peptidoglycan is found in the cell walls of bacteria.
Compare your answer with the correct one above
What are the protein channels in plants that allow high rates of water flow through the membrane via passive transport?
What are the protein channels in plants that allow high rates of water flow through the membrane via passive transport?
The correct answer is aquaporins. While water can move across a membrane via simple diffusion, these transmembrane proteins increase the flow of water. Remember that water is a polar molecule, and is thus relatively impermeable to the plasma membrane despite its small size.
The correct answer is aquaporins. While water can move across a membrane via simple diffusion, these transmembrane proteins increase the flow of water. Remember that water is a polar molecule, and is thus relatively impermeable to the plasma membrane despite its small size.
Compare your answer with the correct one above
What structure in plants allows for CO2 and O2 exchange and transpiration?
What structure in plants allows for CO2 and O2 exchange and transpiration?
The stoma allows for gas exchange and transpiration. The stoma usually opens following stimulation by sunlight and closes in low water environments. Other answers are parts of a typical plant, however do not play a role in gas exchange or transpiration.
The stoma allows for gas exchange and transpiration. The stoma usually opens following stimulation by sunlight and closes in low water environments. Other answers are parts of a typical plant, however do not play a role in gas exchange or transpiration.
Compare your answer with the correct one above
Which plant tissue system is similar to the human circulatory system?
Which plant tissue system is similar to the human circulatory system?
A plant's vascular tissues transport nutrients throughout the plant, just as the circulatory system transports nutrients throughout human bodies. While blood is the primary solvent for nutrients in humans, water is the primary solvent for nutrients in plants. Animals, however, use blood pressure to propel nutrients throughout the body while plants use gravity and the cohesive properties of water to transport nutrients.
The two primary types of plant vascular tissue are xylem, which transports water, and phloem, which transports organic molecules like glucose.
A plant's vascular tissues transport nutrients throughout the plant, just as the circulatory system transports nutrients throughout human bodies. While blood is the primary solvent for nutrients in humans, water is the primary solvent for nutrients in plants. Animals, however, use blood pressure to propel nutrients throughout the body while plants use gravity and the cohesive properties of water to transport nutrients.
The two primary types of plant vascular tissue are xylem, which transports water, and phloem, which transports organic molecules like glucose.
Compare your answer with the correct one above
Of the following answer choices, which most accurately describes the mechanism that the stems of plants use to grow toward light?
Of the following answer choices, which most accurately describes the mechanism that the stems of plants use to grow toward light?
Plants grow so as to maximize the elongation of their stems as much as possible. Cells on the lighter side of the stem are already being provided with photosynthetic energy, while cells on the darker side are receiving less of this energy input. This causes the cells on the darker side to elongate toward the energy source. When one side of the stem is longer than the other, it causes a curve in the growth, resulting in a directionality of the growth of the stem.
Plants grow so as to maximize the elongation of their stems as much as possible. Cells on the lighter side of the stem are already being provided with photosynthetic energy, while cells on the darker side are receiving less of this energy input. This causes the cells on the darker side to elongate toward the energy source. When one side of the stem is longer than the other, it causes a curve in the growth, resulting in a directionality of the growth of the stem.
Compare your answer with the correct one above
What is the function of lateral meristems?
What is the function of lateral meristems?
In addition to growing in height, woody plants also grow in thickness. This is the function of lateral meristems. Lateral meristems are comprised of the vascular cambrium, and by cork cambrium that form vascular cylinders. The vascular cambrium adds layers of secondary xylem and phloem (wood), whereas the cork cambrium replaces the outer epidermis with a thicker and tougher layer called periderm.
In addition to growing in height, woody plants also grow in thickness. This is the function of lateral meristems. Lateral meristems are comprised of the vascular cambrium, and by cork cambrium that form vascular cylinders. The vascular cambrium adds layers of secondary xylem and phloem (wood), whereas the cork cambrium replaces the outer epidermis with a thicker and tougher layer called periderm.
Compare your answer with the correct one above
Which of the following is a key component of a plant's vascular system?
Which of the following is a key component of a plant's vascular system?
The vascular system in plants is designed to transport materials (water, nutrients, food) between the roots and shoots. There are two primary types of tissue dedicated to these processes. Xylem transports water and dissolved minerals upward from the roots; phloem transports sugars—the products of photosynthesis—from where they are synthesized to where they are needed, such as roots and new growth areas of leaves and fruits.
Both xylem and phloem are comprised of a variety of cell types that are specialized for transport and support.
The vascular system in plants is designed to transport materials (water, nutrients, food) between the roots and shoots. There are two primary types of tissue dedicated to these processes. Xylem transports water and dissolved minerals upward from the roots; phloem transports sugars—the products of photosynthesis—from where they are synthesized to where they are needed, such as roots and new growth areas of leaves and fruits.
Both xylem and phloem are comprised of a variety of cell types that are specialized for transport and support.
Compare your answer with the correct one above