Transformations of Polynomial Functions - Math
Card 0 of 4
List the transformations that have been enacted upon the following equation:
![f(x)=4[6(x-3)]^{4}-7](https://vt-vtwa-assets.varsitytutors.com/vt-vtwa/uploads/formula_image/image/106187/gif.latex)
List the transformations that have been enacted upon the following equation:
Since the equation given in the question is based off of the parent function
, we can write the general form for transformations like this:
![g(x) = a[b(x-c)^{4}]+d](https://vt-vtwa-assets.varsitytutors.com/vt-vtwa/uploads/formula_image/image/106188/gif.latex)
determines the vertical stretch or compression factor.
- If
is greater than 1, the function has been vertically stretched (expanded) by a factor of
.
- If
is between 0 and 1, the function has been vertically compressed by a factor of
.
In this case,
is 4, so the function has been vertically stretched by a factor of 4.
determines the horizontal stretch or compression factor.
- If
is greater than 1, the function has been horizontally compressed by a factor of
.
- If
is between 0 and 1, the function has been horizontally stretched (expanded) by a factor of
.
In this case,
is 6, so the function has been horizontally compressed by a factor of 6. (Remember that horizontal stretch and compression are opposite of vertical stretch and compression!)
determines the horizontal translation.
- If
is positive, the function was translated
units right.
- If
is negative, the function was translated
units left.
In this case,
is 3, so the function was translated 3 units right.
determines the vertical translation.
- If
is positive, the function was translated
units up.
- If
is negative, the function was translated
units down.
In this case,
is -7, so the function was translated 7 units down.
Since the equation given in the question is based off of the parent function , we can write the general form for transformations like this:
determines the vertical stretch or compression factor.
- If
is greater than 1, the function has been vertically stretched (expanded) by a factor of
.
- If
is between 0 and 1, the function has been vertically compressed by a factor of
.
In this case, is 4, so the function has been vertically stretched by a factor of 4.
determines the horizontal stretch or compression factor.
- If
is greater than 1, the function has been horizontally compressed by a factor of
.
- If
is between 0 and 1, the function has been horizontally stretched (expanded) by a factor of
.
In this case, is 6, so the function has been horizontally compressed by a factor of 6. (Remember that horizontal stretch and compression are opposite of vertical stretch and compression!)
determines the horizontal translation.
- If
is positive, the function was translated
units right.
- If
is negative, the function was translated
units left.
In this case, is 3, so the function was translated 3 units right.
determines the vertical translation.
- If
is positive, the function was translated
units up.
- If
is negative, the function was translated
units down.
In this case, is -7, so the function was translated 7 units down.
Compare your answer with the correct one above
List the transformations that have been enacted upon the following equation:
![f(x)=4[6(x-3)]^{4}-7](https://vt-vtwa-assets.varsitytutors.com/vt-vtwa/uploads/formula_image/image/106187/gif.latex)
List the transformations that have been enacted upon the following equation:
Since the equation given in the question is based off of the parent function
, we can write the general form for transformations like this:
![g(x) = a[b(x-c)^{4}]+d](https://vt-vtwa-assets.varsitytutors.com/vt-vtwa/uploads/formula_image/image/106188/gif.latex)
determines the vertical stretch or compression factor.
- If
is greater than 1, the function has been vertically stretched (expanded) by a factor of
.
- If
is between 0 and 1, the function has been vertically compressed by a factor of
.
In this case,
is 4, so the function has been vertically stretched by a factor of 4.
determines the horizontal stretch or compression factor.
- If
is greater than 1, the function has been horizontally compressed by a factor of
.
- If
is between 0 and 1, the function has been horizontally stretched (expanded) by a factor of
.
In this case,
is 6, so the function has been horizontally compressed by a factor of 6. (Remember that horizontal stretch and compression are opposite of vertical stretch and compression!)
determines the horizontal translation.
- If
is positive, the function was translated
units right.
- If
is negative, the function was translated
units left.
In this case,
is 3, so the function was translated 3 units right.
determines the vertical translation.
- If
is positive, the function was translated
units up.
- If
is negative, the function was translated
units down.
In this case,
is -7, so the function was translated 7 units down.
Since the equation given in the question is based off of the parent function , we can write the general form for transformations like this:
determines the vertical stretch or compression factor.
- If
is greater than 1, the function has been vertically stretched (expanded) by a factor of
.
- If
is between 0 and 1, the function has been vertically compressed by a factor of
.
In this case, is 4, so the function has been vertically stretched by a factor of 4.
determines the horizontal stretch or compression factor.
- If
is greater than 1, the function has been horizontally compressed by a factor of
.
- If
is between 0 and 1, the function has been horizontally stretched (expanded) by a factor of
.
In this case, is 6, so the function has been horizontally compressed by a factor of 6. (Remember that horizontal stretch and compression are opposite of vertical stretch and compression!)
determines the horizontal translation.
- If
is positive, the function was translated
units right.
- If
is negative, the function was translated
units left.
In this case, is 3, so the function was translated 3 units right.
determines the vertical translation.
- If
is positive, the function was translated
units up.
- If
is negative, the function was translated
units down.
In this case, is -7, so the function was translated 7 units down.
Compare your answer with the correct one above
List the transformations that have been enacted upon the following equation:
![f(x)=4[6(x-3)]^{4}-7](https://vt-vtwa-assets.varsitytutors.com/vt-vtwa/uploads/formula_image/image/106187/gif.latex)
List the transformations that have been enacted upon the following equation:
Since the equation given in the question is based off of the parent function
, we can write the general form for transformations like this:
![g(x) = a[b(x-c)^{4}]+d](https://vt-vtwa-assets.varsitytutors.com/vt-vtwa/uploads/formula_image/image/106188/gif.latex)
determines the vertical stretch or compression factor.
- If
is greater than 1, the function has been vertically stretched (expanded) by a factor of
.
- If
is between 0 and 1, the function has been vertically compressed by a factor of
.
In this case,
is 4, so the function has been vertically stretched by a factor of 4.
determines the horizontal stretch or compression factor.
- If
is greater than 1, the function has been horizontally compressed by a factor of
.
- If
is between 0 and 1, the function has been horizontally stretched (expanded) by a factor of
.
In this case,
is 6, so the function has been horizontally compressed by a factor of 6. (Remember that horizontal stretch and compression are opposite of vertical stretch and compression!)
determines the horizontal translation.
- If
is positive, the function was translated
units right.
- If
is negative, the function was translated
units left.
In this case,
is 3, so the function was translated 3 units right.
determines the vertical translation.
- If
is positive, the function was translated
units up.
- If
is negative, the function was translated
units down.
In this case,
is -7, so the function was translated 7 units down.
Since the equation given in the question is based off of the parent function , we can write the general form for transformations like this:
determines the vertical stretch or compression factor.
- If
is greater than 1, the function has been vertically stretched (expanded) by a factor of
.
- If
is between 0 and 1, the function has been vertically compressed by a factor of
.
In this case, is 4, so the function has been vertically stretched by a factor of 4.
determines the horizontal stretch or compression factor.
- If
is greater than 1, the function has been horizontally compressed by a factor of
.
- If
is between 0 and 1, the function has been horizontally stretched (expanded) by a factor of
.
In this case, is 6, so the function has been horizontally compressed by a factor of 6. (Remember that horizontal stretch and compression are opposite of vertical stretch and compression!)
determines the horizontal translation.
- If
is positive, the function was translated
units right.
- If
is negative, the function was translated
units left.
In this case, is 3, so the function was translated 3 units right.
determines the vertical translation.
- If
is positive, the function was translated
units up.
- If
is negative, the function was translated
units down.
In this case, is -7, so the function was translated 7 units down.
Compare your answer with the correct one above
List the transformations that have been enacted upon the following equation:
![f(x)=4[6(x-3)]^{4}-7](https://vt-vtwa-assets.varsitytutors.com/vt-vtwa/uploads/formula_image/image/106187/gif.latex)
List the transformations that have been enacted upon the following equation:
Since the equation given in the question is based off of the parent function
, we can write the general form for transformations like this:
![g(x) = a[b(x-c)^{4}]+d](https://vt-vtwa-assets.varsitytutors.com/vt-vtwa/uploads/formula_image/image/106188/gif.latex)
determines the vertical stretch or compression factor.
- If
is greater than 1, the function has been vertically stretched (expanded) by a factor of
.
- If
is between 0 and 1, the function has been vertically compressed by a factor of
.
In this case,
is 4, so the function has been vertically stretched by a factor of 4.
determines the horizontal stretch or compression factor.
- If
is greater than 1, the function has been horizontally compressed by a factor of
.
- If
is between 0 and 1, the function has been horizontally stretched (expanded) by a factor of
.
In this case,
is 6, so the function has been horizontally compressed by a factor of 6. (Remember that horizontal stretch and compression are opposite of vertical stretch and compression!)
determines the horizontal translation.
- If
is positive, the function was translated
units right.
- If
is negative, the function was translated
units left.
In this case,
is 3, so the function was translated 3 units right.
determines the vertical translation.
- If
is positive, the function was translated
units up.
- If
is negative, the function was translated
units down.
In this case,
is -7, so the function was translated 7 units down.
Since the equation given in the question is based off of the parent function , we can write the general form for transformations like this:
determines the vertical stretch or compression factor.
- If
is greater than 1, the function has been vertically stretched (expanded) by a factor of
.
- If
is between 0 and 1, the function has been vertically compressed by a factor of
.
In this case, is 4, so the function has been vertically stretched by a factor of 4.
determines the horizontal stretch or compression factor.
- If
is greater than 1, the function has been horizontally compressed by a factor of
.
- If
is between 0 and 1, the function has been horizontally stretched (expanded) by a factor of
.
In this case, is 6, so the function has been horizontally compressed by a factor of 6. (Remember that horizontal stretch and compression are opposite of vertical stretch and compression!)
determines the horizontal translation.
- If
is positive, the function was translated
units right.
- If
is negative, the function was translated
units left.
In this case, is 3, so the function was translated 3 units right.
determines the vertical translation.
- If
is positive, the function was translated
units up.
- If
is negative, the function was translated
units down.
In this case, is -7, so the function was translated 7 units down.
Compare your answer with the correct one above