Acute / Obtuse Triangles - Math
Card 0 of 228
If 2 sides of the triangle are have lengths equal to 8 and 14, what is one possible length of the third side?
If 2 sides of the triangle are have lengths equal to 8 and 14, what is one possible length of the third side?
The sum of the lengths of 2 sides of a triangle must be greater than—but not equal to—the length of the third side. Further, the third side must be longer than the difference between the greater and the lesser of the other two sides; therefore, 20 is the only possible answer.




The sum of the lengths of 2 sides of a triangle must be greater than—but not equal to—the length of the third side. Further, the third side must be longer than the difference between the greater and the lesser of the other two sides; therefore, 20 is the only possible answer.
Compare your answer with the correct one above
In
the length of AB is 15 and the length of side AC is 5. What is the least possible integer length of side BC?
In the length of AB is 15 and the length of side AC is 5. What is the least possible integer length of side BC?
Rule - the length of one side of a triangle must be greater than the differnce and less than the sum of the lengths of the other two sides.
Given lengths of two of the sides of the
are 15 and 5. The length of the third side must be greater than 15-5 or 10 and less than 15+5 or 20.
The question asks what is the least possible integer length of BC, which would be 11
Rule - the length of one side of a triangle must be greater than the differnce and less than the sum of the lengths of the other two sides.
Given lengths of two of the sides of the are 15 and 5. The length of the third side must be greater than 15-5 or 10 and less than 15+5 or 20.
The question asks what is the least possible integer length of BC, which would be 11
Compare your answer with the correct one above
Two similiar triangles exist where the ratio of perimeters is 4:5 for the smaller to the larger triangle. If the larger triangle has sides of 6, 7, and 12 inches, what is the perimeter, in inches, of the smaller triangle?
Two similiar triangles exist where the ratio of perimeters is 4:5 for the smaller to the larger triangle. If the larger triangle has sides of 6, 7, and 12 inches, what is the perimeter, in inches, of the smaller triangle?
The larger triangle has a perimeter of 25 inches. Therefore, using a 4:5 ratio, the smaller triangle's perimeter will be 20 inches.
The larger triangle has a perimeter of 25 inches. Therefore, using a 4:5 ratio, the smaller triangle's perimeter will be 20 inches.
Compare your answer with the correct one above
If a = 7 and b = 4, which of the following could be the perimeter of the triangle?

I. 11
II. 15
III. 25
If a = 7 and b = 4, which of the following could be the perimeter of the triangle?
I. 11
II. 15
III. 25
Consider the perimeter of a triangle:
P = a + b + c
Since we know a and b, we can find c.
In I:
11 = 7 + 4 + c
11 = 11 + c
c = 0
Note that if c = 0, the shape is no longer a trial. Thus, we can eliminate I.
In II:
15 = 7 + 4 + c
15 = 11 + c
c = 4.
This is plausible given that the other sides are 7 and 4.
In III:
25 = 7 + 4 + c
25 = 11 + c
c = 14.
It is not possible for one side of a triangle to be greater than the sum of both of the other sides, so eliminate III.
Thus we are left with only II.
Consider the perimeter of a triangle:
P = a + b + c
Since we know a and b, we can find c.
In I:
11 = 7 + 4 + c
11 = 11 + c
c = 0
Note that if c = 0, the shape is no longer a trial. Thus, we can eliminate I.
In II:
15 = 7 + 4 + c
15 = 11 + c
c = 4.
This is plausible given that the other sides are 7 and 4.
In III:
25 = 7 + 4 + c
25 = 11 + c
c = 14.
It is not possible for one side of a triangle to be greater than the sum of both of the other sides, so eliminate III.
Thus we are left with only II.
Compare your answer with the correct one above
Two sides of an isosceles triangle are 20 and 30. What is the difference of the largest and the smallest possible perimeters?
Two sides of an isosceles triangle are 20 and 30. What is the difference of the largest and the smallest possible perimeters?
The trick here is that we don't know which is the repeated side. Our possible triangles are therefore 20 + 20 + 30 = 70 or 30 + 30 + 20 = 80. The difference is therefore 80 – 70 or 10.
The trick here is that we don't know which is the repeated side. Our possible triangles are therefore 20 + 20 + 30 = 70 or 30 + 30 + 20 = 80. The difference is therefore 80 – 70 or 10.
Compare your answer with the correct one above
Which of the following can NOT be the angles of a triangle?
Which of the following can NOT be the angles of a triangle?
In a triangle, there can only be one obtuse angle. Additionally, all the angle measures must add up to 180.
In a triangle, there can only be one obtuse angle. Additionally, all the angle measures must add up to 180.
Compare your answer with the correct one above
A triangle has sides of length 8, 13, and L. Which of the following cannot equal L?
A triangle has sides of length 8, 13, and L. Which of the following cannot equal L?
The sum of the lengths of two sides of a triangle cannot be less than the length of the third side. 8 + 4 = 12, which is less than 13.
The sum of the lengths of two sides of a triangle cannot be less than the length of the third side. 8 + 4 = 12, which is less than 13.
Compare your answer with the correct one above
Two sides of a triangle are 20 and 32. Which of the following CANNOT be the third side of this triangle.
Two sides of a triangle are 20 and 32. Which of the following CANNOT be the third side of this triangle.
Please remember the Triangle Inequality Theorem, which states that the sum of any two sides of a triangle must be greater than the third side. Therefore, the correct answer is 10 because the sum of 10 and 20 would not be greater than the third side 32.
Please remember the Triangle Inequality Theorem, which states that the sum of any two sides of a triangle must be greater than the third side. Therefore, the correct answer is 10 because the sum of 10 and 20 would not be greater than the third side 32.
Compare your answer with the correct one above
A triangle has a perimeter of 36 inches, and one side that is 12 inches long. The lengths of the other two sides have a ratio of 3:5. What is the length of the longest side of the triangle?
A triangle has a perimeter of 36 inches, and one side that is 12 inches long. The lengths of the other two sides have a ratio of 3:5. What is the length of the longest side of the triangle?
We know that the perimeter is 36 inches, and one side is 12. This means, the sum of the lengths of the other two sides are 24. The ratio between the two sides is 3:5, giving a total of 8 parts. We divide the remaining length, 24 inches, by 8 giving us 3. This means each part is 3. We multiply this by the ratio and get 9:15, meaning the longest side is 15 inches.
We know that the perimeter is 36 inches, and one side is 12. This means, the sum of the lengths of the other two sides are 24. The ratio between the two sides is 3:5, giving a total of 8 parts. We divide the remaining length, 24 inches, by 8 giving us 3. This means each part is 3. We multiply this by the ratio and get 9:15, meaning the longest side is 15 inches.
Compare your answer with the correct one above
A triangle has sides of length 5, 7, and x. Which of the following can NOT be a value of x?
A triangle has sides of length 5, 7, and x. Which of the following can NOT be a value of x?
The sum of the lengths of any two sides of a triangle must exceed the length of the third side; therefore, 5+7 > x, which cannot happen if x = 13.
The sum of the lengths of any two sides of a triangle must exceed the length of the third side; therefore, 5+7 > x, which cannot happen if x = 13.
Compare your answer with the correct one above
Two sides of a triangle have lengths 4 and 7. Which of the following represents the set of all possible lengths of the third side, x?
Two sides of a triangle have lengths 4 and 7. Which of the following represents the set of all possible lengths of the third side, x?
The set of possible lengths is: 7-4 < x < 7+4, or 3 < X < 11.
The set of possible lengths is: 7-4 < x < 7+4, or 3 < X < 11.
Compare your answer with the correct one above
In the triangle below, AB=BC (figure is not to scale) . If angle A is 41°, what is the measure of angle B?
A (Angle A = 41°)

B C
In the triangle below, AB=BC (figure is not to scale) . If angle A is 41°, what is the measure of angle B?
A (Angle A = 41°)
B C
If angle A is 41°, then angle C must also be 41°, since AB=BC. So, the sum of these 2 angles is:
41° + 41° = 82°
Since the sum of the angles in a triangle is 180°, you can find out the measure of the remaining angle by subtracting 82 from 180:
180° - 82° = 98°
If angle A is 41°, then angle C must also be 41°, since AB=BC. So, the sum of these 2 angles is:
41° + 41° = 82°
Since the sum of the angles in a triangle is 180°, you can find out the measure of the remaining angle by subtracting 82 from 180:
180° - 82° = 98°
Compare your answer with the correct one above
If the average of the measures of two angles in a triangle is 75o, what is the measure of the third angle in this triangle?
If the average of the measures of two angles in a triangle is 75o, what is the measure of the third angle in this triangle?
The sum of the angles in a triangle is 180o: a + b + c = 180
In this case, the average of a and b is 75:
(a + b)/2 = 75, then multiply both sides by 2
(a + b) = 150, then substitute into first equation
150 + c = 180
c = 30
The sum of the angles in a triangle is 180o: a + b + c = 180
In this case, the average of a and b is 75:
(a + b)/2 = 75, then multiply both sides by 2
(a + b) = 150, then substitute into first equation
150 + c = 180
c = 30
Compare your answer with the correct one above
Points A, B, C, D are collinear. The measure of ∠ DCE is 130° and of ∠ AEC is 80°. Find the measure of ∠ EAD.

Points A, B, C, D are collinear. The measure of ∠ DCE is 130° and of ∠ AEC is 80°. Find the measure of ∠ EAD.
To solve this question, you need to remember that the sum of the angles in a triangle is 180°. You also need to remember supplementary angles. If you know what ∠ DCE is, you also know what ∠ ECA is. Hence you know two angles of the triangle, 180°-80°-50°= 50°.
To solve this question, you need to remember that the sum of the angles in a triangle is 180°. You also need to remember supplementary angles. If you know what ∠ DCE is, you also know what ∠ ECA is. Hence you know two angles of the triangle, 180°-80°-50°= 50°.
Compare your answer with the correct one above
Let the measures, in degrees, of the three angles of a triangle be x, y, and z. If y = 2z, and z = 0.5x - 30, then what is the measure, in degrees, of the largest angle in the triangle?
Let the measures, in degrees, of the three angles of a triangle be x, y, and z. If y = 2z, and z = 0.5x - 30, then what is the measure, in degrees, of the largest angle in the triangle?
The measures of the three angles are x, y, and z. Because the sum of the measures of the angles in any triangle must be 180 degrees, we know that x + y + z = 180. We can use this equation, along with the other two equations given, to form this system of equations:
x + y + z = 180
y = 2z
z = 0.5x - 30
If we can solve for both y and x in terms of z, then we can substitute these values into the first equation and create an equation with only one variable.
Because we are told already that y = 2z, we alreay have the value of y in terms of z.
We must solve the equation z = 0.5x - 30 for x in terms of z.
Add thirty to both sides.
z + 30 = 0.5x
Mutliply both sides by 2
2(z + 30) = 2z + 60 = x
x = 2z + 60
Now we have the values of x and y in terms of z. Let's substitute these values for x and y into the equation x + y + z = 180.
(2z + 60) + 2z + z = 180
5z + 60 = 180
5z = 120
z = 24
Because y = 2z, we know that y = 2(24) = 48. We also determined earlier that x = 2z + 60, so x = 2(24) + 60 = 108.
Thus, the measures of the three angles of the triangle are 24, 48, and 108. The question asks for the largest of these measures, which is 108.
The answer is 108.
The measures of the three angles are x, y, and z. Because the sum of the measures of the angles in any triangle must be 180 degrees, we know that x + y + z = 180. We can use this equation, along with the other two equations given, to form this system of equations:
x + y + z = 180
y = 2z
z = 0.5x - 30
If we can solve for both y and x in terms of z, then we can substitute these values into the first equation and create an equation with only one variable.
Because we are told already that y = 2z, we alreay have the value of y in terms of z.
We must solve the equation z = 0.5x - 30 for x in terms of z.
Add thirty to both sides.
z + 30 = 0.5x
Mutliply both sides by 2
2(z + 30) = 2z + 60 = x
x = 2z + 60
Now we have the values of x and y in terms of z. Let's substitute these values for x and y into the equation x + y + z = 180.
(2z + 60) + 2z + z = 180
5z + 60 = 180
5z = 120
z = 24
Because y = 2z, we know that y = 2(24) = 48. We also determined earlier that x = 2z + 60, so x = 2(24) + 60 = 108.
Thus, the measures of the three angles of the triangle are 24, 48, and 108. The question asks for the largest of these measures, which is 108.
The answer is 108.
Compare your answer with the correct one above
Angles x, y, and z make up the interior angles of a scalene triangle. Angle x is three times the size of y and 1/2 the size of z. How big is angle y.
Angles x, y, and z make up the interior angles of a scalene triangle. Angle x is three times the size of y and 1/2 the size of z. How big is angle y.
The answer is 18
We know that the sum of all the angles is 180. Using the rest of the information given we can write the other two equations:
x + y + z = 180
x = 3y
2x = z
We can solve for y and z in the second and third equations and then plug into the first to solve.
x + (1/3)x + 2x = 180
3\[x + (1/3)x + 2x = 180\]
3x + x + 6x = 540
10x = 540
x = 54
y = 18
z = 108
The answer is 18
We know that the sum of all the angles is 180. Using the rest of the information given we can write the other two equations:
x + y + z = 180
x = 3y
2x = z
We can solve for y and z in the second and third equations and then plug into the first to solve.
x + (1/3)x + 2x = 180
3\[x + (1/3)x + 2x = 180\]
3x + x + 6x = 540
10x = 540
x = 54
y = 18
z = 108
Compare your answer with the correct one above
If the average (arithmetic mean) of two noncongruent angles of an isosceles triangle is
, which of the following is the measure of one of the angles of the triangle?
If the average (arithmetic mean) of two noncongruent angles of an isosceles triangle is , which of the following is the measure of one of the angles of the triangle?
Since the triangle is isosceles, we know that 2 of the angles (that sum up to 180) must be equal. The question states that the noncongruent angles average 55°, thus providing us with a system of two equations:


Solving for x and y by substitution, we get x = 70° and y = 40° (which average out to 55°).
70 + 70 + 40 equals 180 also checks out.
Since 70° is not an answer choice for us, we know that the 40° must be one of the angles.
Since the triangle is isosceles, we know that 2 of the angles (that sum up to 180) must be equal. The question states that the noncongruent angles average 55°, thus providing us with a system of two equations:
Solving for x and y by substitution, we get x = 70° and y = 40° (which average out to 55°).
70 + 70 + 40 equals 180 also checks out.
Since 70° is not an answer choice for us, we know that the 40° must be one of the angles.
Compare your answer with the correct one above
The measure of
is
. Since
,
, and
are collinear, and the measure of
is
, we know that the measure of
is
.
Because the measures of the three angles in a triangle must add up to
, and two of the angles in triangle
are
and
, the third angle,
, is
.
The measure of is
. Since
,
, and
are collinear, and the measure of
is
, we know that the measure of
is
.
Because the measures of the three angles in a triangle must add up to , and two of the angles in triangle
are
and
, the third angle,
, is
.
Compare your answer with the correct one above
Triangle ABC has angle measures as follows:



What is
?
Triangle ABC has angle measures as follows:
What is ?
The sum of the measures of the angles of a triangle is 180.
Thus we set up the equation 
After combining like terms and cancelling, we have 
Thus 
The sum of the measures of the angles of a triangle is 180.
Thus we set up the equation
After combining like terms and cancelling, we have
Thus
Compare your answer with the correct one above
The base angle of an isosceles triangle is
. What is the vertex angle?
The base angle of an isosceles triangle is . What is the vertex angle?
Every triangle has 180 degrees. An isosceles triangle has one vertex angle and two congruent base angles.
Solve the equation
for x to find the measure of the vertex angle.
x = 180 - 27 - 27
x = 126
Therefore the measure of the vertex angle is
.
Every triangle has 180 degrees. An isosceles triangle has one vertex angle and two congruent base angles.
Solve the equation for x to find the measure of the vertex angle.
x = 180 - 27 - 27
x = 126
Therefore the measure of the vertex angle is .
Compare your answer with the correct one above