Neurons and Action Potential - MCAT Biological and Biochemical Foundations of Living Systems
Card 0 of 472
The primary purpose of the sodium/potassium pump is to .
The primary purpose of the sodium/potassium pump is to .
Na+/K+ ATPase always exports three sodium ions out of the cell and imports two potassium ions into the cell. The export of three positively charged sodium ions for the import of only two positively charged potassium ions results in a net -70mV charge across the cell membrane, which is known as the cell membrane resting potential.
Na+/K+ ATPase always exports three sodium ions out of the cell and imports two potassium ions into the cell. The export of three positively charged sodium ions for the import of only two positively charged potassium ions results in a net -70mV charge across the cell membrane, which is known as the cell membrane resting potential.
Compare your answer with the correct one above
Which of the following is NOT true of the neural soma and axon?
Which of the following is NOT true of the neural soma and axon?
All of the following are true characteristics of the neural axon and soma except “increased ribosomal activity in the axon hillock.” The axon hillock is a site of neurotransmitter transport. These molecules are produced and packaged in the soma of the neuron, before being translocated to the axon hillock via microtubule tracks. There is little to no ribosomal activity in the axon of a neuron, since most ribosomes are located near the nucleus of a cell, which is the site of mRNA release.
All of the following are true characteristics of the neural axon and soma except “increased ribosomal activity in the axon hillock.” The axon hillock is a site of neurotransmitter transport. These molecules are produced and packaged in the soma of the neuron, before being translocated to the axon hillock via microtubule tracks. There is little to no ribosomal activity in the axon of a neuron, since most ribosomes are located near the nucleus of a cell, which is the site of mRNA release.
Compare your answer with the correct one above
In humans, nerve impulses are transmitted with the coordinated action of sodium and potassium ion channels. These channels open in a specific sequence, to allow for membrane potential changes to take place in a directional manner along the length of an axon.
Figure 1 depicts a single phospholipid layer of a cell membrane, and three transmembrane channels important to action potential propagation.

The cell body associated with the axon depicted in Figure 1 takes in neural impulses from a variety of other neurons. A tract that carries such impulses into the cell body is .
In humans, nerve impulses are transmitted with the coordinated action of sodium and potassium ion channels. These channels open in a specific sequence, to allow for membrane potential changes to take place in a directional manner along the length of an axon.
Figure 1 depicts a single phospholipid layer of a cell membrane, and three transmembrane channels important to action potential propagation.
The cell body associated with the axon depicted in Figure 1 takes in neural impulses from a variety of other neurons. A tract that carries such impulses into the cell body is .
A dendrite carries electrical signals into the cell body of a neuron. This dendrite, however, is typically not myelinated like the axon. There are also frequently many dendrites, while a single axon is the typical rule. Different types of neural cells can carry different arrangements of dendrites depending on their function.
A dendrite carries electrical signals into the cell body of a neuron. This dendrite, however, is typically not myelinated like the axon. There are also frequently many dendrites, while a single axon is the typical rule. Different types of neural cells can carry different arrangements of dendrites depending on their function.
Compare your answer with the correct one above
In humans, nerve impulses are transmitted with the coordinated action of sodium and potassium ion channels. These channels open in a specific sequence, to allow for membrane potential changes to take place in a directional manner along the length of an axon.
Figure 1 depicts a single phospholipid layer of a cell membrane, and three transmembrane channels important to action potential propagation.

In the cell body associated with the axon depicted in Figure 1, integration of incoming electrical signals is necessary in order to determine whether or not an action potential is initiated by the cell. The region where this integration takes place is the .
In humans, nerve impulses are transmitted with the coordinated action of sodium and potassium ion channels. These channels open in a specific sequence, to allow for membrane potential changes to take place in a directional manner along the length of an axon.
Figure 1 depicts a single phospholipid layer of a cell membrane, and three transmembrane channels important to action potential propagation.
In the cell body associated with the axon depicted in Figure 1, integration of incoming electrical signals is necessary in order to determine whether or not an action potential is initiated by the cell. The region where this integration takes place is the .
The axon hillock is located near the boundary of the cell body and the beginning of the axon. This region is where the totality of incoming nervous signals onto a single cell are summed, and only if this sum meets the threshold does the axon fire an action potential itself.
The axon hillock is located near the boundary of the cell body and the beginning of the axon. This region is where the totality of incoming nervous signals onto a single cell are summed, and only if this sum meets the threshold does the axon fire an action potential itself.
Compare your answer with the correct one above
Which component of a neuron is responsible for electochemically stimulating nearby cells?
Which component of a neuron is responsible for electochemically stimulating nearby cells?
The axon ends in a terminal bud, which transmits signals to target cells by releasing neurotransmitters across the synapse. The soma is the body of the cell and contains the nucleus. This is where the majority of protein synthesis occurs. The dendrites receive electrochemical stimuli from other neurons and cells and transmit the signal to the soma and axon.
The axon ends in a terminal bud, which transmits signals to target cells by releasing neurotransmitters across the synapse. The soma is the body of the cell and contains the nucleus. This is where the majority of protein synthesis occurs. The dendrites receive electrochemical stimuli from other neurons and cells and transmit the signal to the soma and axon.
Compare your answer with the correct one above
What is the source of neurons and glia that innervate the pancreas?
What is the source of neurons and glia that innervate the pancreas?
The enteric nervous system (ENS) is a component of the autonomic nervous system, which is a component of the peripheral nervous system. The ENS is responsible for innervating the digestive organs and, thus, regulating digestion.
The central nervous system is composed of the brain and spinal cord, while the peripheral nervous system prolifertates the body. The somatic nervous system is under voluntary control, while the autonomic is involuntary. The cranial nerves are a set of specialized nerves that branch directly off of the spinal cord.
The enteric nervous system (ENS) is a component of the autonomic nervous system, which is a component of the peripheral nervous system. The ENS is responsible for innervating the digestive organs and, thus, regulating digestion.
The central nervous system is composed of the brain and spinal cord, while the peripheral nervous system prolifertates the body. The somatic nervous system is under voluntary control, while the autonomic is involuntary. The cranial nerves are a set of specialized nerves that branch directly off of the spinal cord.
Compare your answer with the correct one above
How does the sodium-potassium pump accomplish its function of maintaining the electrochemical potential across a cell membrane?
How does the sodium-potassium pump accomplish its function of maintaining the electrochemical potential across a cell membrane?
The sodium-potassium pump moves three sodium ions out of the cell for every two potassium ions it moves in. ATP is used to accomplish this because the direction of movement for both ions is against their concentration gradients.
By removing three sodium ions for the entry of every two potassium ions, the pump creates an electrical imbalance: three positive charges exit the cell, but only two enter. There is a net movement of positive charge out of the cell, leading to the electrochemical gradient. The ion imbalance leads to the negative resting potential of the cell.
The sodium-potassium pump moves three sodium ions out of the cell for every two potassium ions it moves in. ATP is used to accomplish this because the direction of movement for both ions is against their concentration gradients.
By removing three sodium ions for the entry of every two potassium ions, the pump creates an electrical imbalance: three positive charges exit the cell, but only two enter. There is a net movement of positive charge out of the cell, leading to the electrochemical gradient. The ion imbalance leads to the negative resting potential of the cell.
Compare your answer with the correct one above
The sodium-potassium pump is an antiporter that moves sodium ions out of the cell and potassium ions into the cell. This pumping action requires ATP. What can you conclude about the electrochemical gradient of sodium?
The sodium-potassium pump is an antiporter that moves sodium ions out of the cell and potassium ions into the cell. This pumping action requires ATP. What can you conclude about the electrochemical gradient of sodium?
The question states that the sodium-potassium pump requires ATP, indicating that the pumping action uses energy and is classified as active transport. Recall that active transport involves movement of molecules against their electrochemical gradient. This means that the sodium and potassium ions are moved against their gradients. Since they are moving against their gradients, sodium and potassium ions must move from a region of low concentration to a region of high concentration.
The question states that sodium ions are moving from the inside to the outside of the cell; therefore, there must be a higher concentration of sodium ions outside the cell than inside the cell.
The question states that the sodium-potassium pump requires ATP, indicating that the pumping action uses energy and is classified as active transport. Recall that active transport involves movement of molecules against their electrochemical gradient. This means that the sodium and potassium ions are moved against their gradients. Since they are moving against their gradients, sodium and potassium ions must move from a region of low concentration to a region of high concentration.
The question states that sodium ions are moving from the inside to the outside of the cell; therefore, there must be a higher concentration of sodium ions outside the cell than inside the cell.
Compare your answer with the correct one above
Ependymal cells are a type of glial cells that .
Ependymal cells are a type of glial cells that .
Along with capillaries, the ependymal cells create the choroid plexus. The choroid plexus is responsible for synthesizing and secreting cerebrospinal fluid around the brain and the spinal cord.
Along with capillaries, the ependymal cells create the choroid plexus. The choroid plexus is responsible for synthesizing and secreting cerebrospinal fluid around the brain and the spinal cord.
Compare your answer with the correct one above
What side effect may occur after exposure to a chemical that inhibits the release of acetylcholinesterase?
What side effect may occur after exposure to a chemical that inhibits the release of acetylcholinesterase?
Acetylcholinesterase is the enzyme responsible for breaking down acetylcholine, an excitatory neurotransmitter released into the synaptic cleft. If acetylcholine cannot be broken down by this enzyme, the neurotransmitter will continue to attach to the receptors on the postsynaptic cell. This can result in continuous, uncontrolled stimulation of neurons.
Acetylcholinesterase is the enzyme responsible for breaking down acetylcholine, an excitatory neurotransmitter released into the synaptic cleft. If acetylcholine cannot be broken down by this enzyme, the neurotransmitter will continue to attach to the receptors on the postsynaptic cell. This can result in continuous, uncontrolled stimulation of neurons.
Compare your answer with the correct one above
What is the normal resting potential of a neuron?
What is the normal resting potential of a neuron?
Resting potential is determined by evaluating the relative ion concentrations inside a cell in relation to the ion concentrations outside of the cell. For a resting neuron, the inside of the cell contains large amounts of potassium and the external environment contains large amounts of sodium. However, the resting potential is substantially negative due to the presence of negatively charged DNA and other molecules inside the cell. The normal resting potential of a neuron is
.
Resting potential is determined by evaluating the relative ion concentrations inside a cell in relation to the ion concentrations outside of the cell. For a resting neuron, the inside of the cell contains large amounts of potassium and the external environment contains large amounts of sodium. However, the resting potential is substantially negative due to the presence of negatively charged DNA and other molecules inside the cell. The normal resting potential of a neuron is .
Compare your answer with the correct one above
The parietal cells of the stomach are vital for both food digestion and as a defense mechanism against pathogens. When the parietal cells are not functioning properly, diseases such sepsis due to Clostridium difficile and malnutrition may occur. To keep the digestive system healthy, proper nutrition as well as a balanced diet is vital.
The parietal cells of the stomach secrete hydrochloric acid via the hormone gastrin. Gastrin is released when the stomach distends, via the presence of proteins and/or indirectly by the vagus nerve from the parasympathetic nervous system. Hydrochloric acid breaks down certain ingested food as well as activates certain zymogens for further digestion of macromolecules. The high acidity of the stomach due to the release of hydrochloric acid by parietal cells also destroys most pathogens. When the parietal cell is not functioning properly, opportunistic pathogens may create health problems.
Parietal cells also secrete intrinsic factor, a glycoprotein which binds to vitamin B12 to prevent destruction of the vitamin by the hydrochloric acid. Down the gastrointestinal tract, the vitamin is absorbed by the ileum of the small intestine. Vitamin B12 is essential for red blood cell production. A diet low in vitamin B12 may lead to anemia.
Even before the presence of food in the stomach, the parietal cells already began secreting hydrochloric acid during the cephalic phase of digestion. Which of the following best explains how this occur?
The parietal cells of the stomach are vital for both food digestion and as a defense mechanism against pathogens. When the parietal cells are not functioning properly, diseases such sepsis due to Clostridium difficile and malnutrition may occur. To keep the digestive system healthy, proper nutrition as well as a balanced diet is vital.
The parietal cells of the stomach secrete hydrochloric acid via the hormone gastrin. Gastrin is released when the stomach distends, via the presence of proteins and/or indirectly by the vagus nerve from the parasympathetic nervous system. Hydrochloric acid breaks down certain ingested food as well as activates certain zymogens for further digestion of macromolecules. The high acidity of the stomach due to the release of hydrochloric acid by parietal cells also destroys most pathogens. When the parietal cell is not functioning properly, opportunistic pathogens may create health problems.
Parietal cells also secrete intrinsic factor, a glycoprotein which binds to vitamin B12 to prevent destruction of the vitamin by the hydrochloric acid. Down the gastrointestinal tract, the vitamin is absorbed by the ileum of the small intestine. Vitamin B12 is essential for red blood cell production. A diet low in vitamin B12 may lead to anemia.
Even before the presence of food in the stomach, the parietal cells already began secreting hydrochloric acid during the cephalic phase of digestion. Which of the following best explains how this occur?
During the cephalic phase of digestion, seeing the food will activate the cerebral cortex, which will then integrate the visual stimuli and trigger stimulation of the vagus nerve. The vagus nerve will then indirectly stimulate the G cells of the stomach to release gastrin. The release of gastrin will then promote the parietal cells to release hydrochloric acid.
During the cephalic phase of digestion, seeing the food will activate the cerebral cortex, which will then integrate the visual stimuli and trigger stimulation of the vagus nerve. The vagus nerve will then indirectly stimulate the G cells of the stomach to release gastrin. The release of gastrin will then promote the parietal cells to release hydrochloric acid.
Compare your answer with the correct one above
The central nervous system consists of the brain and the spinal cord. In general, tracts allow for the brain to communicate up and down with the spinal cord. The commissures allow for the two hemispheres of the brain to communicate with each other. One of the most important commissures is the corpus callosum. The association fibers allow for the anterior regions of the brain to communicate with the posterior regions. One of the evolved routes from the spinal cord to the brain is via the dorsal column pathway. This route allows for fine touch, vibration, proprioception and 2 points discrimination. This pathway is much faster than the pain route. From the lower limbs, the signal ascends to the brain via a region called the gracile fasciculus. From the upper limbs, the signal ascends via the cuneate fasciculus region in the spinal cord.
If the spinal cord was severed, which of the following functions will still be intact?
I. Fine touch
II. Pain
III. Knee-jerk reflex
The central nervous system consists of the brain and the spinal cord. In general, tracts allow for the brain to communicate up and down with the spinal cord. The commissures allow for the two hemispheres of the brain to communicate with each other. One of the most important commissures is the corpus callosum. The association fibers allow for the anterior regions of the brain to communicate with the posterior regions. One of the evolved routes from the spinal cord to the brain is via the dorsal column pathway. This route allows for fine touch, vibration, proprioception and 2 points discrimination. This pathway is much faster than the pain route. From the lower limbs, the signal ascends to the brain via a region called the gracile fasciculus. From the upper limbs, the signal ascends via the cuneate fasciculus region in the spinal cord.
If the spinal cord was severed, which of the following functions will still be intact?
I. Fine touch
II. Pain
III. Knee-jerk reflex
According to the passage, both fine touch and pain require the signal to travel up to the brain in order to process the information. A severed spinal cord will interfere with both fine touch and pain. Reflex signals only travel at the level of the stimulus.
According to the passage, both fine touch and pain require the signal to travel up to the brain in order to process the information. A severed spinal cord will interfere with both fine touch and pain. Reflex signals only travel at the level of the stimulus.
Compare your answer with the correct one above
What side effect may occur after exposure to a chemical that inhibits the release of acetylcholinesterase?
What side effect may occur after exposure to a chemical that inhibits the release of acetylcholinesterase?
Acetylcholinesterase is the enzyme responsible for breaking down acetylcholine, an excitatory neurotransmitter released into the synaptic cleft. If acetylcholine cannot be broken down by this enzyme, the neurotransmitter will continue to attach to the receptors on the postsynaptic cell. This can result in continuous, uncontrolled stimulation of neurons.
Acetylcholinesterase is the enzyme responsible for breaking down acetylcholine, an excitatory neurotransmitter released into the synaptic cleft. If acetylcholine cannot be broken down by this enzyme, the neurotransmitter will continue to attach to the receptors on the postsynaptic cell. This can result in continuous, uncontrolled stimulation of neurons.
Compare your answer with the correct one above
What is the normal resting potential of a neuron?
What is the normal resting potential of a neuron?
Resting potential is determined by evaluating the relative ion concentrations inside a cell in relation to the ion concentrations outside of the cell. For a resting neuron, the inside of the cell contains large amounts of potassium and the external environment contains large amounts of sodium. However, the resting potential is substantially negative due to the presence of negatively charged DNA and other molecules inside the cell. The normal resting potential of a neuron is
.
Resting potential is determined by evaluating the relative ion concentrations inside a cell in relation to the ion concentrations outside of the cell. For a resting neuron, the inside of the cell contains large amounts of potassium and the external environment contains large amounts of sodium. However, the resting potential is substantially negative due to the presence of negatively charged DNA and other molecules inside the cell. The normal resting potential of a neuron is .
Compare your answer with the correct one above
The parietal cells of the stomach are vital for both food digestion and as a defense mechanism against pathogens. When the parietal cells are not functioning properly, diseases such sepsis due to Clostridium difficile and malnutrition may occur. To keep the digestive system healthy, proper nutrition as well as a balanced diet is vital.
The parietal cells of the stomach secrete hydrochloric acid via the hormone gastrin. Gastrin is released when the stomach distends, via the presence of proteins and/or indirectly by the vagus nerve from the parasympathetic nervous system. Hydrochloric acid breaks down certain ingested food as well as activates certain zymogens for further digestion of macromolecules. The high acidity of the stomach due to the release of hydrochloric acid by parietal cells also destroys most pathogens. When the parietal cell is not functioning properly, opportunistic pathogens may create health problems.
Parietal cells also secrete intrinsic factor, a glycoprotein which binds to vitamin B12 to prevent destruction of the vitamin by the hydrochloric acid. Down the gastrointestinal tract, the vitamin is absorbed by the ileum of the small intestine. Vitamin B12 is essential for red blood cell production. A diet low in vitamin B12 may lead to anemia.
Even before the presence of food in the stomach, the parietal cells already began secreting hydrochloric acid during the cephalic phase of digestion. Which of the following best explains how this occur?
The parietal cells of the stomach are vital for both food digestion and as a defense mechanism against pathogens. When the parietal cells are not functioning properly, diseases such sepsis due to Clostridium difficile and malnutrition may occur. To keep the digestive system healthy, proper nutrition as well as a balanced diet is vital.
The parietal cells of the stomach secrete hydrochloric acid via the hormone gastrin. Gastrin is released when the stomach distends, via the presence of proteins and/or indirectly by the vagus nerve from the parasympathetic nervous system. Hydrochloric acid breaks down certain ingested food as well as activates certain zymogens for further digestion of macromolecules. The high acidity of the stomach due to the release of hydrochloric acid by parietal cells also destroys most pathogens. When the parietal cell is not functioning properly, opportunistic pathogens may create health problems.
Parietal cells also secrete intrinsic factor, a glycoprotein which binds to vitamin B12 to prevent destruction of the vitamin by the hydrochloric acid. Down the gastrointestinal tract, the vitamin is absorbed by the ileum of the small intestine. Vitamin B12 is essential for red blood cell production. A diet low in vitamin B12 may lead to anemia.
Even before the presence of food in the stomach, the parietal cells already began secreting hydrochloric acid during the cephalic phase of digestion. Which of the following best explains how this occur?
During the cephalic phase of digestion, seeing the food will activate the cerebral cortex, which will then integrate the visual stimuli and trigger stimulation of the vagus nerve. The vagus nerve will then indirectly stimulate the G cells of the stomach to release gastrin. The release of gastrin will then promote the parietal cells to release hydrochloric acid.
During the cephalic phase of digestion, seeing the food will activate the cerebral cortex, which will then integrate the visual stimuli and trigger stimulation of the vagus nerve. The vagus nerve will then indirectly stimulate the G cells of the stomach to release gastrin. The release of gastrin will then promote the parietal cells to release hydrochloric acid.
Compare your answer with the correct one above
The central nervous system consists of the brain and the spinal cord. In general, tracts allow for the brain to communicate up and down with the spinal cord. The commissures allow for the two hemispheres of the brain to communicate with each other. One of the most important commissures is the corpus callosum. The association fibers allow for the anterior regions of the brain to communicate with the posterior regions. One of the evolved routes from the spinal cord to the brain is via the dorsal column pathway. This route allows for fine touch, vibration, proprioception and 2 points discrimination. This pathway is much faster than the pain route. From the lower limbs, the signal ascends to the brain via a region called the gracile fasciculus. From the upper limbs, the signal ascends via the cuneate fasciculus region in the spinal cord.
If the spinal cord was severed, which of the following functions will still be intact?
I. Fine touch
II. Pain
III. Knee-jerk reflex
The central nervous system consists of the brain and the spinal cord. In general, tracts allow for the brain to communicate up and down with the spinal cord. The commissures allow for the two hemispheres of the brain to communicate with each other. One of the most important commissures is the corpus callosum. The association fibers allow for the anterior regions of the brain to communicate with the posterior regions. One of the evolved routes from the spinal cord to the brain is via the dorsal column pathway. This route allows for fine touch, vibration, proprioception and 2 points discrimination. This pathway is much faster than the pain route. From the lower limbs, the signal ascends to the brain via a region called the gracile fasciculus. From the upper limbs, the signal ascends via the cuneate fasciculus region in the spinal cord.
If the spinal cord was severed, which of the following functions will still be intact?
I. Fine touch
II. Pain
III. Knee-jerk reflex
According to the passage, both fine touch and pain require the signal to travel up to the brain in order to process the information. A severed spinal cord will interfere with both fine touch and pain. Reflex signals only travel at the level of the stimulus.
According to the passage, both fine touch and pain require the signal to travel up to the brain in order to process the information. A severed spinal cord will interfere with both fine touch and pain. Reflex signals only travel at the level of the stimulus.
Compare your answer with the correct one above
Sarin gas is a potent nerve agent that quickly causes serious physiological effects if ingested, even in very small quantities. It inhibits acetylcholinesterase, an enzyme that degrades acetylcholine. Acetylcholinesterase generally acts at the neuromuscular junction.
Sarin gas may cause which of the following?
Sarin gas is a potent nerve agent that quickly causes serious physiological effects if ingested, even in very small quantities. It inhibits acetylcholinesterase, an enzyme that degrades acetylcholine. Acetylcholinesterase generally acts at the neuromuscular junction.
Sarin gas may cause which of the following?
Acetylcholine is the neurotransmitter that acts at neuromuscular junctions. Acetylcholinesterase degrades acetylcholine at the synaptic cleft, allowing the muscle to relax. If acetylcholinesterase is inhibited, acetylcholine will remain in the synaptic cleft and continuously stimulate the muscle. Breathing requires the ability to contract and relax respiratory muscles. Without rapid administration of an antidote, sarin gas usually results in death from asphyxiation. Acetylcholine causes pupil constriction and gastrointestinal motility. It is not associated with a rapid increase in leukocyte production.
Acetylcholine is the neurotransmitter that acts at neuromuscular junctions. Acetylcholinesterase degrades acetylcholine at the synaptic cleft, allowing the muscle to relax. If acetylcholinesterase is inhibited, acetylcholine will remain in the synaptic cleft and continuously stimulate the muscle. Breathing requires the ability to contract and relax respiratory muscles. Without rapid administration of an antidote, sarin gas usually results in death from asphyxiation. Acetylcholine causes pupil constriction and gastrointestinal motility. It is not associated with a rapid increase in leukocyte production.
Compare your answer with the correct one above
Which of the following neurons would have vesicles of norepinephrine in its axon terminal?
Which of the following neurons would have vesicles of norepinephrine in its axon terminal?
Norepinephrine (also called noradrenaline), is associated with the sympathetic nervous system. Acetylcholine is the most commonly used neurotransmitter in the autonomic nervous system, however norepinephrine is the neurotransmitter released from sympathetic postganglionic neurons to elicit sympathetic responses from target tissues.
The parasympathetic nervous system uses only acetylcholine.
Norepinephrine (also called noradrenaline), is associated with the sympathetic nervous system. Acetylcholine is the most commonly used neurotransmitter in the autonomic nervous system, however norepinephrine is the neurotransmitter released from sympathetic postganglionic neurons to elicit sympathetic responses from target tissues.
The parasympathetic nervous system uses only acetylcholine.
Compare your answer with the correct one above
Which of the following are potential fates of neurotransmitters that have been released into the synaptic cleft?
I. Reuptake
II. Degradation
III. Passive diffusion away from synaptic cleft
IV. Bind receptors
Which of the following are potential fates of neurotransmitters that have been released into the synaptic cleft?
I. Reuptake
II. Degradation
III. Passive diffusion away from synaptic cleft
IV. Bind receptors
Every choice listed is a potential fate of neurotransmitters that have been released into the synaptic cleft. They can passively diffuse away from the synaptic cleft due to normal chemical principles. Neurotransmitters can also bind their target receptors and stimulate the post-synaptic neuron. There may also be special enzymes that inactivate or degrade neurotransmitters in the synaptic cleft, as acetylcholinesterase does with acetylcholine. It is also possible for reuptake to occur (the neurotransmitters to be taken back into the pre-synaptic neuron).
Every choice listed is a potential fate of neurotransmitters that have been released into the synaptic cleft. They can passively diffuse away from the synaptic cleft due to normal chemical principles. Neurotransmitters can also bind their target receptors and stimulate the post-synaptic neuron. There may also be special enzymes that inactivate or degrade neurotransmitters in the synaptic cleft, as acetylcholinesterase does with acetylcholine. It is also possible for reuptake to occur (the neurotransmitters to be taken back into the pre-synaptic neuron).
Compare your answer with the correct one above