Equations / Solution Sets - PSAT Math
Card 0 of 294
Factor the following equation.
x2 – 16
Factor the following equation.
x2 – 16
Tap to see back →
The correct answer is (x + 4)(x – 4)
We neen to factor x2 – 16 to solve. We know that each parenthesis will contain an x to make the x2. We know that the root of 16 is 4 and since it is negative and no value of x is present we can tell that one 4 must be positive and the other negative. If we work it from the multiple choice answers we will see that when multiplying it out we get x2 + 4x – 4x – 16. 4x – 4x cancels out and we are left with our answer.
The correct answer is (x + 4)(x – 4)
We neen to factor x2 – 16 to solve. We know that each parenthesis will contain an x to make the x2. We know that the root of 16 is 4 and since it is negative and no value of x is present we can tell that one 4 must be positive and the other negative. If we work it from the multiple choice answers we will see that when multiplying it out we get x2 + 4x – 4x – 16. 4x – 4x cancels out and we are left with our answer.
If x3 – y3 = 30, and x2 + xy + y2 = 6, then what is x2 – 2xy + y2?
If x3 – y3 = 30, and x2 + xy + y2 = 6, then what is x2 – 2xy + y2?
Tap to see back →
First, let's factor x3 – y3 using the formula for difference of cubes.
x3 – y3 = (x – y)(x2 + xy + y2)
We are told that x2 + xy + y2 = 6. Thus, we can substitute 6 into the above equation and solve for x – y.
(x - y)(6) = 30.
Divide both sides by 6.
x – y = 5.
The original questions asks us to find x2 – 2xy + y2. Notice that if we factor x2 – 2xy + y2 using the formula for perfect squares, we obtain the following:
x2 – 2xy + y2 = (x – y)2.
Since we know that (x – y) = 5, (x – y)2 must equal 52, or 25.
Thus, x2 – 2xy + y2 = 25.
The answer is 25.
First, let's factor x3 – y3 using the formula for difference of cubes.
x3 – y3 = (x – y)(x2 + xy + y2)
We are told that x2 + xy + y2 = 6. Thus, we can substitute 6 into the above equation and solve for x – y.
(x - y)(6) = 30.
Divide both sides by 6.
x – y = 5.
The original questions asks us to find x2 – 2xy + y2. Notice that if we factor x2 – 2xy + y2 using the formula for perfect squares, we obtain the following:
x2 – 2xy + y2 = (x – y)2.
Since we know that (x – y) = 5, (x – y)2 must equal 52, or 25.
Thus, x2 – 2xy + y2 = 25.
The answer is 25.
if x – y = 4 and x2 – y = 34, what is x?
if x – y = 4 and x2 – y = 34, what is x?
Tap to see back →
This can be solved by substitution and factoring.
x2 – y = 34 can be written as y = x2 – 34 and substituted into the other equation: x – y = 4 which leads to x – x2 + 34 = 4 which can be written as x2 – x – 30 = 0.
x2 – x – 30 = 0 can be factored to (x – 6)(x + 5) = 0 so x = 6 and –5 and because only 6 is a possible answer, it is the correct choice.
This can be solved by substitution and factoring.
x2 – y = 34 can be written as y = x2 – 34 and substituted into the other equation: x – y = 4 which leads to x – x2 + 34 = 4 which can be written as x2 – x – 30 = 0.
x2 – x – 30 = 0 can be factored to (x – 6)(x + 5) = 0 so x = 6 and –5 and because only 6 is a possible answer, it is the correct choice.
If x_2 + 2_ax + 81 = 0. When a = 9, what is the value of x?
If x_2 + 2_ax + 81 = 0. When a = 9, what is the value of x?
Tap to see back →
When a = 9, then x_2 + 2_ax + 81 = 0 becomes
x_2 + 18_x + 81 = 0.
This equation can be factored as (x + 9)2 = 0.
Therefore when a = 9, x = –9.
When a = 9, then x_2 + 2_ax + 81 = 0 becomes
x_2 + 18_x + 81 = 0.
This equation can be factored as (x + 9)2 = 0.
Therefore when a = 9, x = –9.
Hannah is selling candles for a school fundraiser all fall. She sets a goal of selling
candles per month. The number of candles she has remaining for the month can be expressed at the end of each week by the equations
, where
is the number of candles and
is the number of weeks she has sold candles this month. What is the meaning of the value
in this equation?
Hannah is selling candles for a school fundraiser all fall. She sets a goal of selling candles per month. The number of candles she has remaining for the month can be expressed at the end of each week by the equations
, where
is the number of candles and
is the number of weeks she has sold candles this month. What is the meaning of the value
in this equation?
Tap to see back →
Since we know that
stands for weeks, the answer has to have something to do with the weeks. This eliminates "the number of candles she has remaining for the month." Also, we can eliminate "the number of weeks that she has sold candles this month" because that would be our value for
, not what we'd multiply
by. The correct answer is, "the number of candles that she sells each week."
Since we know that stands for weeks, the answer has to have something to do with the weeks. This eliminates "the number of candles she has remaining for the month." Also, we can eliminate "the number of weeks that she has sold candles this month" because that would be our value for
, not what we'd multiply
by. The correct answer is, "the number of candles that she sells each week."
If f(x) has roots at x = –1, 0 and 2, which of the following could be the equation for f(x)?
If f(x) has roots at x = –1, 0 and 2, which of the following could be the equation for f(x)?
Tap to see back →
In general, if a function has a root at x = r, then (x – r) must be a factor of f(x). In this problem, we are told that f(x) has roots at –1, 0 and 2. This means that the following are all factors of f(x):
(x – (–1)) = x + 1
(x – 0) = x
and (x – 2).
This means that we must look for an equation for f(x) that has the factors (x + 1), x, and (x – 2).
We can immediately eliminate the function f(x) = _x_2 + x – 2, because we cannot factor an x out of this polynomial. For the same reason, we can eliminate f(x) = _x_2 – x – 2.
Let's look at the function f(x) = _x_3 – x_2 + 2_x. When we factor this, we are left with x(_x_2 – x + 2). We cannot factor this polynomial any further. Thus, x + 1 and x – 2 are not factors of this function, so it can't be the answer.
Next, let's examine f(x) = _x_4 + _x_3 – 2_x_2 .
We can factor out _x_2.
_x_2 (_x_2 + x – 2)
When we factor _x_2 + x – 2, we will get (x + 2)(x – 1). These factors are not the same as x – 2 and x + 1.
The only function with the right factors is f(x) = _x_3 – x_2 – 2_x.
When we factor out an x, we get (_x_2 – x – 2), which then factors into (x – 2)(x + 1). Thus, this function has all of the factors we need.
The answer is f(x) = _x_3 – x_2 – 2_x.
In general, if a function has a root at x = r, then (x – r) must be a factor of f(x). In this problem, we are told that f(x) has roots at –1, 0 and 2. This means that the following are all factors of f(x):
(x – (–1)) = x + 1
(x – 0) = x
and (x – 2).
This means that we must look for an equation for f(x) that has the factors (x + 1), x, and (x – 2).
We can immediately eliminate the function f(x) = _x_2 + x – 2, because we cannot factor an x out of this polynomial. For the same reason, we can eliminate f(x) = _x_2 – x – 2.
Let's look at the function f(x) = _x_3 – x_2 + 2_x. When we factor this, we are left with x(_x_2 – x + 2). We cannot factor this polynomial any further. Thus, x + 1 and x – 2 are not factors of this function, so it can't be the answer.
Next, let's examine f(x) = _x_4 + _x_3 – 2_x_2 .
We can factor out _x_2.
_x_2 (_x_2 + x – 2)
When we factor _x_2 + x – 2, we will get (x + 2)(x – 1). These factors are not the same as x – 2 and x + 1.
The only function with the right factors is f(x) = _x_3 – x_2 – 2_x.
When we factor out an x, we get (_x_2 – x – 2), which then factors into (x – 2)(x + 1). Thus, this function has all of the factors we need.
The answer is f(x) = _x_3 – x_2 – 2_x.
Assume that
and
are integers and that
. The value of
must be divisible by all of the following EXCEPT:
Assume that and
are integers and that
. The value of
must be divisible by all of the following EXCEPT:
Tap to see back →
The numbers by which _x_6 – _y_6 is divisible will be all of its factors. In other words, we need to find all of the factors of _x_6 – _y_6 , which essentially means we must factor _x_6 – _y_6 as much as we can.
First, we will want to apply the difference of squares rule, which states that, in general, _a_2 – _b_2 = (a – b)(a + b). Notice that a and b are the square roots of the values of _a_2 and _b_2, because √_a_2 = a, and √_b_2 = b (assuming a and b are positive). In other words, we can apply the difference of squares formula to _x_6 – _y_6 if we simply find the square roots of _x_6 and _y_6.
Remember that taking the square root of a quantity is the same as raising it to the one-half power. Remember also that, in general, (ab)c = abc.
√_x_6 = (_x_6)(1/2) = x(6(1/2)) = _x_3
Similarly, √_y_6 = _y_3.
Let's now apply the difference of squares factoring rule.
_x_6 – _y_6 = (_x_3 – _y_3)(_x_3 + _y_3)
Because we can express _x_6 – _y_6 as the product of (_x_3 – _y_3) and (_x_3 + _y_3), both (_x_3 – _y_3) and (_x_3 + _y_3) are factors of _x_6 – _y_6 . Thus, we can eliminate _x_3 – _y_3 from the answer choices.
Let's continue to factor (_x_3 – _y_3)(_x_3 + _y_3). We must now apply the sum of cubes and differences of cubes formulas, which are given below:
In general, _a_3 + _b_3 = (a + b)(_a_2 – ab + _b_2). Also, _a_3 – _b_3 = (a – b)(_a_2 + ab + _b_2)
Thus, we have the following:
(_x_3 – _y_3)(_x_3 + _y_3) = (x – y)(_x_2 + xy + _y_2)(x + y)(_x_2 – xy + _y_2)
This means that x – y and x + y are both factors of _x_6 – _y_6 , so we can eliminate both of those answer choices.
We can rearrange the factorization (x – y)(_x_2 + xy + _y_2)(x + y)(_x_2 – xy + _y_2) as follows:
(x – y)(x + y)(_x_2 + xy + _y_2)(_x_2 – xy + _y_2)
Notice that (x – y)(x + y) is merely the factorization of difference of squares. Therefore, (x – y)(x + y) = _x_2 – _y_2.
(x – y)(x + y)(_x_2 + xy +_y_2)(_x_2 – xy + _y_2) = (_x_2 – _y_2)(_x_2 + xy +_y_2)(_x_2 – xy + _y_2)
This means that _x_2 – _y_2 is also a factor of _x_6 – _y_6.
By process of elimination, _x_2 + _y_2 is not necessarily a factor of _x_6 – _y_6 .
The answer is _x_2 + _y_2 .
The numbers by which _x_6 – _y_6 is divisible will be all of its factors. In other words, we need to find all of the factors of _x_6 – _y_6 , which essentially means we must factor _x_6 – _y_6 as much as we can.
First, we will want to apply the difference of squares rule, which states that, in general, _a_2 – _b_2 = (a – b)(a + b). Notice that a and b are the square roots of the values of _a_2 and _b_2, because √_a_2 = a, and √_b_2 = b (assuming a and b are positive). In other words, we can apply the difference of squares formula to _x_6 – _y_6 if we simply find the square roots of _x_6 and _y_6.
Remember that taking the square root of a quantity is the same as raising it to the one-half power. Remember also that, in general, (ab)c = abc.
√_x_6 = (_x_6)(1/2) = x(6(1/2)) = _x_3
Similarly, √_y_6 = _y_3.
Let's now apply the difference of squares factoring rule.
_x_6 – _y_6 = (_x_3 – _y_3)(_x_3 + _y_3)
Because we can express _x_6 – _y_6 as the product of (_x_3 – _y_3) and (_x_3 + _y_3), both (_x_3 – _y_3) and (_x_3 + _y_3) are factors of _x_6 – _y_6 . Thus, we can eliminate _x_3 – _y_3 from the answer choices.
Let's continue to factor (_x_3 – _y_3)(_x_3 + _y_3). We must now apply the sum of cubes and differences of cubes formulas, which are given below:
In general, _a_3 + _b_3 = (a + b)(_a_2 – ab + _b_2). Also, _a_3 – _b_3 = (a – b)(_a_2 + ab + _b_2)
Thus, we have the following:
(_x_3 – _y_3)(_x_3 + _y_3) = (x – y)(_x_2 + xy + _y_2)(x + y)(_x_2 – xy + _y_2)
This means that x – y and x + y are both factors of _x_6 – _y_6 , so we can eliminate both of those answer choices.
We can rearrange the factorization (x – y)(_x_2 + xy + _y_2)(x + y)(_x_2 – xy + _y_2) as follows:
(x – y)(x + y)(_x_2 + xy + _y_2)(_x_2 – xy + _y_2)
Notice that (x – y)(x + y) is merely the factorization of difference of squares. Therefore, (x – y)(x + y) = _x_2 – _y_2.
(x – y)(x + y)(_x_2 + xy +_y_2)(_x_2 – xy + _y_2) = (_x_2 – _y_2)(_x_2 + xy +_y_2)(_x_2 – xy + _y_2)
This means that _x_2 – _y_2 is also a factor of _x_6 – _y_6.
By process of elimination, _x_2 + _y_2 is not necessarily a factor of _x_6 – _y_6 .
The answer is _x_2 + _y_2 .
Factor
.
Factor .
Tap to see back →
First pull out any common terms: 4_x_3 – 16_x_ = 4_x_(_x_2 – 4)
_x_2 – 4 is a difference of squares, so we can also factor that further. The difference of squares formula is _a_2 – _b_2 = (a – b)(a + b). Here a = x and b = 2. So _x_2 – 4 = (x – 2)(x + 2).
Putting everything together, 4_x_3 – 16_x_ = 4_x_(x + 2)(x – 2).
First pull out any common terms: 4_x_3 – 16_x_ = 4_x_(_x_2 – 4)
_x_2 – 4 is a difference of squares, so we can also factor that further. The difference of squares formula is _a_2 – _b_2 = (a – b)(a + b). Here a = x and b = 2. So _x_2 – 4 = (x – 2)(x + 2).
Putting everything together, 4_x_3 – 16_x_ = 4_x_(x + 2)(x – 2).
Factor 36_x_2 – 49_y_2.
Factor 36_x_2 – 49_y_2.
Tap to see back →
This is a difference of squares. The difference of squares formula is a_2 – b_2 = (a + b)(a – b). In this problem, a = 6_x and b = 7_y.
So 36_x_2 – 49_y_2 = (6_x_ + 7_y_)(6_x_ – 7_y_).
This is a difference of squares. The difference of squares formula is a_2 – b_2 = (a + b)(a – b). In this problem, a = 6_x and b = 7_y.
So 36_x_2 – 49_y_2 = (6_x_ + 7_y_)(6_x_ – 7_y_).
Solve for x:
$x^{2}$-2x-48 = 0
Solve for x:
$x^{2}$-2x-48 = 0
Tap to see back →
Find two numbers that add to -2 and multiply to -48
Factors of 48
1,2,3,4,6,8,12,16,24,48
You can use -8 +6 =-2
(x-8)(x+6) = 0
Then make each factor equal 0.
x-8 = 0 and x+6 = 0
x= 8 and x=-6
Find two numbers that add to -2 and multiply to -48
Factors of 48
1,2,3,4,6,8,12,16,24,48
You can use -8 +6 =-2
(x-8)(x+6) = 0
Then make each factor equal 0.
x-8 = 0 and x+6 = 0
x= 8 and x=-6

Solve for
.
Solve for .
Tap to see back →

Find all factors of 24
1, 2, 3,4, 6, 8, 12, 24
Now find two factors that add up to
and multiply to
;
and
are the two factors.
By factoring, you can set the equation to be 
If you FOIL it out, it gives you
.
Set each part of the equation equal to 0, and solve for
.
and 
and 
Find all factors of 24
1, 2, 3,4, 6, 8, 12, 24
Now find two factors that add up to and multiply to
;
and
are the two factors.
By factoring, you can set the equation to be
If you FOIL it out, it gives you .
Set each part of the equation equal to 0, and solve for .
and
and
Find the roots of $f(x)=x^2$+2x-3
Find the roots of $f(x)=x^2$+2x-3
Tap to see back →
Factoring yields (x+3)(x-1) giving roots of -3 and 1.
Factoring yields (x+3)(x-1) giving roots of -3 and 1.
$$\frac{-3-2x+x^{2}$$}{x-3}
Find the root of the equation above.
$$\frac{-3-2x+x^{2}$$}{x-3}
Find the root of the equation above.
Tap to see back →
The numerator can be factored into (x-3)(x+1).
Therefore, it can cancel with the denominator. So x+1=0 imples x=-1.
The numerator can be factored into (x-3)(x+1).
Therefore, it can cancel with the denominator. So x+1=0 imples x=-1.
Factor

Factor
Tap to see back →
We can factor out a
, leaving $2(x^2$-9x-36).
From there we can factor again to
.
We can factor out a , leaving $2(x^2$-9x-36).
From there we can factor again to
.
Factor 4_x_3 – 16_x_
Factor 4_x_3 – 16_x_
Tap to see back →
First pull out any common terms: 4_x_3 – 16_x_ = 4_x_(_x_2 – 4)
_x_2 – 4 is a difference of squares, so we can also factor that further. The difference of squares formula is _a_2 – _b_2 = (a – b)(a + b). Here a = x and b = 2. So _x_2 – 4 = (x – 2)(x + 2).
Putting everything together, 4_x_3 – 16_x_ = 4_x_(x + 2)(x – 2).
First pull out any common terms: 4_x_3 – 16_x_ = 4_x_(_x_2 – 4)
_x_2 – 4 is a difference of squares, so we can also factor that further. The difference of squares formula is _a_2 – _b_2 = (a – b)(a + b). Here a = x and b = 2. So _x_2 – 4 = (x – 2)(x + 2).
Putting everything together, 4_x_3 – 16_x_ = 4_x_(x + 2)(x – 2).
Factor the following:

Factor the following:
Tap to see back →
Start by looking at your last term. Since this term is negative, you will need to have a positive group and a negative group:

Now, since the middle term is positive, you can guess that the positive group will contain the larger number. Likewise, since the coefficient is only
, you can guess that the factors will be close. Two such factors of
are
and
.
Therefore, your groups will be:

Start by looking at your last term. Since this term is negative, you will need to have a positive group and a negative group:
Now, since the middle term is positive, you can guess that the positive group will contain the larger number. Likewise, since the coefficient is only , you can guess that the factors will be close. Two such factors of
are
and
.
Therefore, your groups will be:
Factor the following:

Factor the following:
Tap to see back →
Begin by looking at the last element. Since it is positive, you know that your groups will contain either two additions or two subtractions. Since the middle term is negative (
), your groups will be two subtractions:

Now, the factors of
are
and
,
and
, and
and
.
Clearly, the last is the one that works, for when you FOIL
, you get your original equation!
Begin by looking at the last element. Since it is positive, you know that your groups will contain either two additions or two subtractions. Since the middle term is negative (), your groups will be two subtractions:
Now, the factors of are
and
,
and
, and
and
.
Clearly, the last is the one that works, for when you FOIL , you get your original equation!
Solve for
:

Solve for :
Tap to see back →





The original statement is equivalent to a statement that is identically true regardless of the value of
; therefore, so is the original statement itself. The solution set is the set of all real numbers.
The original statement is equivalent to a statement that is identically true regardless of the value of ; therefore, so is the original statement itself. The solution set is the set of all real numbers.
If
, what is the value of:

If , what is the value of:
Tap to see back →
To solve this equation, simply plug 12 in for
in the equation.



To solve this equation, simply plug 12 in for in the equation.
Which of the following is true of the solution set of the equation
?
Which of the following is true of the solution set of the equation ?
Tap to see back →
Factor the polynomial as the difference of squares:



We set each binomial equal to 0 and apply the Square Root Property:



This yields two imaginary solutions.



This yields two irrational solutions.
The correct response is that the solution set comprises two irrational numbers and two imaginary numbers.
Factor the polynomial as the difference of squares:
We set each binomial equal to 0 and apply the Square Root Property:
This yields two imaginary solutions.
This yields two irrational solutions.
The correct response is that the solution set comprises two irrational numbers and two imaginary numbers.