Right Triangles - PSAT Math
Card 0 of 609
The ratio for the side lengths of a right triangle is 3:4:5. If the perimeter is 48, what is the area of the triangle?
The ratio for the side lengths of a right triangle is 3:4:5. If the perimeter is 48, what is the area of the triangle?
We can model the side lengths of the triangle as 3x, 4x, and 5x. We know that perimeter is 3x+4x+5x=48, which implies that x=4. This tells us that the legs of the right triangle are 3x=12 and 4x=16, therefore the area is A=1/2 bh=(1/2)(12)(16)=96.
We can model the side lengths of the triangle as 3x, 4x, and 5x. We know that perimeter is 3x+4x+5x=48, which implies that x=4. This tells us that the legs of the right triangle are 3x=12 and 4x=16, therefore the area is A=1/2 bh=(1/2)(12)(16)=96.
Compare your answer with the correct one above
Jim leaves his home and walks 10 minutes due west and 5 minutes due south. If Jim could walk a straight line from his current position back to his house, how far, in minutes, is Jim from home?
Jim leaves his home and walks 10 minutes due west and 5 minutes due south. If Jim could walk a straight line from his current position back to his house, how far, in minutes, is Jim from home?
By using Pythagorean Theorem, we can solve for the distance “as the crow flies” from Jim to his home:
102 + 52 = _x_2
100 + 25 = _x_2
√125 = x, but we still need to factor the square root
√125 = √25*5, and since the √25 = 5, we can move that outside of the radical, so
5√5= x
By using Pythagorean Theorem, we can solve for the distance “as the crow flies” from Jim to his home:
102 + 52 = _x_2
100 + 25 = _x_2
√125 = x, but we still need to factor the square root
√125 = √25*5, and since the √25 = 5, we can move that outside of the radical, so
5√5= x
Compare your answer with the correct one above
If one of the short sides of a 45-45-90 triangle equals 5, how long is the hypotenuse?
If one of the short sides of a 45-45-90 triangle equals 5, how long is the hypotenuse?
Using the Pythagorean theorem, _x_2 + _y_2 = _h_2. And since it is a 45-45-90 triangle the two short sides are equal. Therefore 52 + 52 = _h_2 . Multiplied out 25 + 25 = _h_2.
Therefore _h_2 = 50, so h = √50 = √2 * √25 or 5√2.
Using the Pythagorean theorem, _x_2 + _y_2 = _h_2. And since it is a 45-45-90 triangle the two short sides are equal. Therefore 52 + 52 = _h_2 . Multiplied out 25 + 25 = _h_2.
Therefore _h_2 = 50, so h = √50 = √2 * √25 or 5√2.
Compare your answer with the correct one above

If the length of CB is 6 and the angle C measures 45º, what is the length of AC in the given right triangle?
If the length of CB is 6 and the angle C measures 45º, what is the length of AC in the given right triangle?
Pythagorean Theorum
AB2 + BC2 = AC2
If C is 45º then A is 45º, therefore AB = BC
AB2 + BC2 = AC2
62 + 62 = AC2
2*62 = AC2
AC = √(2*62) = 6√2
Pythagorean Theorum
AB2 + BC2 = AC2
If C is 45º then A is 45º, therefore AB = BC
AB2 + BC2 = AC2
62 + 62 = AC2
2*62 = AC2
AC = √(2*62) = 6√2
Compare your answer with the correct one above
A square enclosure has a total area of 3,600 square feet. What is the length, in feet, of a diagonal across the field rounded to the nearest whole number?
A square enclosure has a total area of 3,600 square feet. What is the length, in feet, of a diagonal across the field rounded to the nearest whole number?
In order to find the length of the diagonal accross a square, we must first find the lengths of the individual sides.
The area of a square is found by multiply the lengths of 2 sides of a square by itself.
So, the square root of 3,600 comes out to 60 ft.
The diagonal of a square can be found by treating it like a right triangle, and so, we can use the pythagorean theorem for a right triangle.
602 + 602 = C2
the square root of 7,200 is 84.8, which can be rounded to 85
In order to find the length of the diagonal accross a square, we must first find the lengths of the individual sides.
The area of a square is found by multiply the lengths of 2 sides of a square by itself.
So, the square root of 3,600 comes out to 60 ft.
The diagonal of a square can be found by treating it like a right triangle, and so, we can use the pythagorean theorem for a right triangle.
602 + 602 = C2
the square root of 7,200 is 84.8, which can be rounded to 85
Compare your answer with the correct one above
Dan drives 5 miles north and then 8 miles west to get to school. If he walks, he can take a direct path from his house to the school, cutting down the distance. How long is the path from Dan's house to his school?
Dan drives 5 miles north and then 8 miles west to get to school. If he walks, he can take a direct path from his house to the school, cutting down the distance. How long is the path from Dan's house to his school?
We are really looking for the hypotenuse of a triangle that has legs of 5 miles and 8 miles.
Apply the Pythagorean Theorem:
a2 + b2 = c2
25 + 64 = c2
89 = c2
c = 9.43 miles
We are really looking for the hypotenuse of a triangle that has legs of 5 miles and 8 miles.
Apply the Pythagorean Theorem:
a2 + b2 = c2
25 + 64 = c2
89 = c2
c = 9.43 miles
Compare your answer with the correct one above
Bob the Helicopter is at 30,000 ft. above sea level, and as viewed on a map his airport is 40,000 ft. away. If Bob travels in a straight line to his airport at 250 feet per second, how many minutes will it take him to arrive?
Bob the Helicopter is at 30,000 ft. above sea level, and as viewed on a map his airport is 40,000 ft. away. If Bob travels in a straight line to his airport at 250 feet per second, how many minutes will it take him to arrive?
Draw a right triangle with a height of 30,000 ft. and a base of 40,000 ft. The hypotenuse, or distance travelled, is then 50,000ft using the Pythagorean Theorem. Then dividing distance by speed will give us time, which is 200 seconds, or 3 minutes and 20 seconds.
Draw a right triangle with a height of 30,000 ft. and a base of 40,000 ft. The hypotenuse, or distance travelled, is then 50,000ft using the Pythagorean Theorem. Then dividing distance by speed will give us time, which is 200 seconds, or 3 minutes and 20 seconds.
Compare your answer with the correct one above
A right triangle has two sides, 9 and x, and a hypotenuse of 15. What is x?
A right triangle has two sides, 9 and x, and a hypotenuse of 15. What is x?
We can use the Pythagorean Theorem to solve for x.
92 + _x_2 = 152
81 + _x_2 = 225
_x_2 = 144
x = 12
We can use the Pythagorean Theorem to solve for x.
92 + _x_2 = 152
81 + _x_2 = 225
_x_2 = 144
x = 12
Compare your answer with the correct one above
To get from his house to the hardware store, Bob must drive 3 miles to the east and then 4 miles to the north. If Bob was able to drive along a straight line directly connecting his house to the store, how far would he have to travel then?
To get from his house to the hardware store, Bob must drive 3 miles to the east and then 4 miles to the north. If Bob was able to drive along a straight line directly connecting his house to the store, how far would he have to travel then?
Since east and north directions are perpendicular, the possible routes Bob can take can be represented by a right triangle with sides a and b of length 3 miles and 5 miles, respectively. The hypotenuse c represents the straight line connecting his house to the store, and its length can be found using the Pythagorean theorem: _c_2 = 32+ 42 = 25. Since the square root of 25 is 5, the length of the hypotenuse is 5 miles.
Since east and north directions are perpendicular, the possible routes Bob can take can be represented by a right triangle with sides a and b of length 3 miles and 5 miles, respectively. The hypotenuse c represents the straight line connecting his house to the store, and its length can be found using the Pythagorean theorem: _c_2 = 32+ 42 = 25. Since the square root of 25 is 5, the length of the hypotenuse is 5 miles.
Compare your answer with the correct one above
A right triangle has legs of 15m and 20m. What is the length of the hypotenuse?
A right triangle has legs of 15m and 20m. What is the length of the hypotenuse?
The Pythagorean theorem is a2 + b2 = c2, where a and b are legs of the right triangle, and c is the hypotenuse.
(15)2 + (20)2 = c2 so c2 = 625. Take the square root to get c = 25m
The Pythagorean theorem is a2 + b2 = c2, where a and b are legs of the right triangle, and c is the hypotenuse.
(15)2 + (20)2 = c2 so c2 = 625. Take the square root to get c = 25m
Compare your answer with the correct one above
Acute angles x and y are inside a right triangle. If x is four less than one third of 21, what is y?
Acute angles x and y are inside a right triangle. If x is four less than one third of 21, what is y?
We know that the sum of all the angles must be 180 and we already know one angle is 90, leaving the sum of x and y to be 90.
Solve for x to find y.
One third of 21 is 7. Four less than 7 is 3. So if angle x is 3 then that leaves 87 for angle y.
We know that the sum of all the angles must be 180 and we already know one angle is 90, leaving the sum of x and y to be 90.
Solve for x to find y.
One third of 21 is 7. Four less than 7 is 3. So if angle x is 3 then that leaves 87 for angle y.
Compare your answer with the correct one above
If a right triangle has one leg with a length of 4 and a hypotenuse with a length of 8, what is the measure of the angle between the hypotenuse and its other leg?
If a right triangle has one leg with a length of 4 and a hypotenuse with a length of 8, what is the measure of the angle between the hypotenuse and its other leg?
The first thing to notice is that this is a 30o:60o:90o triangle. If you draw a diagram, it is easier to see that the angle that is asked for corresponds to the side with a length of 4. This will be the smallest angle. The correct answer is 30.
The first thing to notice is that this is a 30o:60o:90o triangle. If you draw a diagram, it is easier to see that the angle that is asked for corresponds to the side with a length of 4. This will be the smallest angle. The correct answer is 30.
Compare your answer with the correct one above

In the figure above, what is the positive difference, in degrees, between the measures of angle ACB and angle CBD?
In the figure above, what is the positive difference, in degrees, between the measures of angle ACB and angle CBD?
In the figure above, angle ADB is a right angle. Because side AC is a straight line, angle CDB must also be a right angle.
Let’s examine triangle ADB. The sum of the measures of the three angles must be 180 degrees, and we know that angle ADB must be 90 degrees, since it is a right angle. We can now set up the following equation.
x + y + 90 = 180
Subtract 90 from both sides.
x + y = 90
Next, we will look at triangle CDB. We know that angle CDB is also 90 degrees, so we will write the following equation:
y – 10 + 2_x_ – 20 + 90 = 180
y + 2_x_ + 60 = 180
Subtract 60 from both sides.
y + 2_x_ = 120
We have a system of equations consisting of x + y = 90 and y + 2_x_ = 120. We can solve this system by solving one equation in terms of x and then substituting this value into the second equation. Let’s solve for y in the equation x + y = 90.
x + y = 90
Subtract x from both sides.
y = 90 – x
Next, we can substitute 90 – x into the equation y + 2_x_ = 120.
(90 – x) + 2_x_ = 120
90 + x = 120
x = 120 – 90 = 30
x = 30
Since y = 90 – x, y = 90 – 30 = 60.
The question ultimately asks us to find the positive difference between the measures of ACB and CBD. The measure of ACB = 2_x_ – 20 = 2(30) – 20 = 40 degrees. The measure of CBD = y – 10 = 60 – 10 = 50 degrees. The positive difference between 50 degrees and 40 degrees is 10.
The answer is 10.
In the figure above, angle ADB is a right angle. Because side AC is a straight line, angle CDB must also be a right angle.
Let’s examine triangle ADB. The sum of the measures of the three angles must be 180 degrees, and we know that angle ADB must be 90 degrees, since it is a right angle. We can now set up the following equation.
x + y + 90 = 180
Subtract 90 from both sides.
x + y = 90
Next, we will look at triangle CDB. We know that angle CDB is also 90 degrees, so we will write the following equation:
y – 10 + 2_x_ – 20 + 90 = 180
y + 2_x_ + 60 = 180
Subtract 60 from both sides.
y + 2_x_ = 120
We have a system of equations consisting of x + y = 90 and y + 2_x_ = 120. We can solve this system by solving one equation in terms of x and then substituting this value into the second equation. Let’s solve for y in the equation x + y = 90.
x + y = 90
Subtract x from both sides.
y = 90 – x
Next, we can substitute 90 – x into the equation y + 2_x_ = 120.
(90 – x) + 2_x_ = 120
90 + x = 120
x = 120 – 90 = 30
x = 30
Since y = 90 – x, y = 90 – 30 = 60.
The question ultimately asks us to find the positive difference between the measures of ACB and CBD. The measure of ACB = 2_x_ – 20 = 2(30) – 20 = 40 degrees. The measure of CBD = y – 10 = 60 – 10 = 50 degrees. The positive difference between 50 degrees and 40 degrees is 10.
The answer is 10.
Compare your answer with the correct one above
Which of the following sets of line-segment lengths can form a triangle?
Which of the following sets of line-segment lengths can form a triangle?
In any given triangle, the sum of any two sides is greater than the third. The incorrect answers have the sum of two sides equal to the third.
In any given triangle, the sum of any two sides is greater than the third. The incorrect answers have the sum of two sides equal to the third.
Compare your answer with the correct one above
In right
,
and
.
What is the value of
?
In right ,
and
.
What is the value of ?
There are 180 degrees in every triangle. Since this triangle is a right triangle, one of the angles measures 90 degrees.
Therefore,
.


There are 180 degrees in every triangle. Since this triangle is a right triangle, one of the angles measures 90 degrees.
Therefore, .
Compare your answer with the correct one above

Refer to the above diagram. Which of the following gives a valid alternative name for
?
Refer to the above diagram. Which of the following gives a valid alternative name for ?
A triangle can be named after its three vertices in any order, so all of the choices given are valid.
A triangle can be named after its three vertices in any order, so all of the choices given are valid.
Compare your answer with the correct one above
You are given triangles
and
,with
and
both right angles, and
. Which of these statements, along with what you are given, is not enough to prove that
?
I) 
II) 
III)
and
have the same area.
You are given triangles and
,with
and
both right angles, and
. Which of these statements, along with what you are given, is not enough to prove that
?
I)
II)
III) and
have the same area.
, and the right angles are
and
, so we have two right triangles with congruent legs.
If we also know that
, then the hypotenuses of the right triangles are also congruent, and this sets up the conditions of the Hypotenuse-Leg Theorem.
If we also know that
, then, along with the fact that
(both being right angles) and nonincluded sides
, the conditions of the Angle-Angle-Side Theorem are set up.
If we also know
and
have the same area, we can demonstrate that the other legs are congruent. The area of a right triangle is half the product of its legs, and since we have the same areas,



Since
,


The legs and the included angles (the right angles) are congruent, thus setting up the conditions for the Angle-Side-Angle Postulate.
In all three cases, congruence follows, so the correct response is "Any of the three statements is enough to prove congruence."
, and the right angles are
and
, so we have two right triangles with congruent legs.
If we also know that , then the hypotenuses of the right triangles are also congruent, and this sets up the conditions of the Hypotenuse-Leg Theorem.
If we also know that , then, along with the fact that
(both being right angles) and nonincluded sides
, the conditions of the Angle-Angle-Side Theorem are set up.
If we also know and
have the same area, we can demonstrate that the other legs are congruent. The area of a right triangle is half the product of its legs, and since we have the same areas,
Since ,
The legs and the included angles (the right angles) are congruent, thus setting up the conditions for the Angle-Side-Angle Postulate.
In all three cases, congruence follows, so the correct response is "Any of the three statements is enough to prove congruence."
Compare your answer with the correct one above

In the figure above, line segments DC and AB are parallel. What is the perimeter of quadrilateral ABCD?
In the figure above, line segments DC and AB are parallel. What is the perimeter of quadrilateral ABCD?
Because DC and AB are parallel, this means that angles CDB and ABD are equal. When two parallel lines are cut by a transversal line, alternate interior angles (such as CDB and ABD) are congruent.
Now, we can show that triangles ABD and BDC are similar. Both ABD and BDC are right triangles. This means that they have one angle that is the same—their right angle. Also, we just established that angles CDB and ABD are congruent. By the angle-angle similarity theorem, if two triangles have two angles that are congruent, they are similar. Thus triangles ABD and BDC are similar triangles.
We can use the similarity between triangles ABD and BDC to find the lengths of BC and CD. The length of BC is proportional to the length of AD, and the length of CD is proportional to the length of DB, because these sides correspond.
We don’t know the length of DB, but we can find it using the Pythagorean Theorem. Let a, b, and c represent the lengths of AD, AB, and BD respectively. According to the Pythagorean Theorem:
_a_2 + _b_2 = _c_2
152 + 202 = _c_2
625 = _c_2
c = 25
The length of BD is 25.

We now have what we need to find the perimeter of the quadrilateral.
Perimeter = sum of the lengths of AB, BC, CD, and DA.
Perimeter = 20 + 18.75 + 31.25 + 15 = 85
The answer is 85.
Because DC and AB are parallel, this means that angles CDB and ABD are equal. When two parallel lines are cut by a transversal line, alternate interior angles (such as CDB and ABD) are congruent.
Now, we can show that triangles ABD and BDC are similar. Both ABD and BDC are right triangles. This means that they have one angle that is the same—their right angle. Also, we just established that angles CDB and ABD are congruent. By the angle-angle similarity theorem, if two triangles have two angles that are congruent, they are similar. Thus triangles ABD and BDC are similar triangles.
We can use the similarity between triangles ABD and BDC to find the lengths of BC and CD. The length of BC is proportional to the length of AD, and the length of CD is proportional to the length of DB, because these sides correspond.
We don’t know the length of DB, but we can find it using the Pythagorean Theorem. Let a, b, and c represent the lengths of AD, AB, and BD respectively. According to the Pythagorean Theorem:
_a_2 + _b_2 = _c_2
152 + 202 = _c_2
625 = _c_2
c = 25
The length of BD is 25.
We now have what we need to find the perimeter of the quadrilateral.
Perimeter = sum of the lengths of AB, BC, CD, and DA.
Perimeter = 20 + 18.75 + 31.25 + 15 = 85
The answer is 85.
Compare your answer with the correct one above
and
is a right angle.
Which angle or angles must be complementary to
?
I) 
II) 
III) 
IV) 
V) 
and
is a right angle.
Which angle or angles must be complementary to ?
I)
II)
III)
IV)
V)
is a right angle, and, since corresponding angles of similar triangles are congruent, so is
. A right angle cannot be part of a complementary pair so both can be eliminated.
can be eliminated, since it is congruent to
; congruent angles are not necessarily complementary.
Since
is right angle,
is a right triangle, and
and
are its acute angles. That makes
complementary to
. Since
is congruent to
, it is also complementary to
.
The correct response is II and V only.
is a right angle, and, since corresponding angles of similar triangles are congruent, so is
. A right angle cannot be part of a complementary pair so both can be eliminated.
can be eliminated, since it is congruent to
; congruent angles are not necessarily complementary.
Since is right angle,
is a right triangle, and
and
are its acute angles. That makes
complementary to
. Since
is congruent to
, it is also complementary to
.
The correct response is II and V only.
Compare your answer with the correct one above

Note: Figures NOT drawn to scale.
Refer to the above figure. Given that
, evaluate
.
Note: Figures NOT drawn to scale.
Refer to the above figure. Given that , evaluate
.
By the Pythagorean Theorem, since
is the hypotenuse of a right triangle with legs 6 and 8, its measure is
.
The similarity ratio of
to
is
.
Likewise,



By the Pythagorean Theorem, since is the hypotenuse of a right triangle with legs 6 and 8, its measure is
.
The similarity ratio of to
is
.
Likewise,
Compare your answer with the correct one above