Argumentative Science Passages - SSAT Middle Level Reading
Card 0 of 168
Adapted from “Introduced Species That Have Become Pests” in Our Vanishing Wild Life, Its Extermination and Protection by William Temple Hornaday (1913)
The man who successfully transplants or "introduces" into a new habitat any persistent species of living thing assumes a very grave responsibility. Every introduced species is doubtful gravel until panned out. The enormous losses that have been inflicted upon the world through the perpetuation of follies with wild vertebrates and insects would, if added together, be enough to purchase a principality. The most aggravating feature of these follies in transplantation is that never yet have they been made severely punishable. We are just as careless and easygoing on this point as we were about the government of the Yellowstone Park in the days when Howell and other poachers destroyed our first national bison herd, and when caught red-handed—as Howell was, skinning seven Park bison cows—could not be punished for it, because there was no penalty prescribed by any law. Today, there is a way in which any revengeful person could inflict enormous damage on the entire South, at no cost to himself, involve those states in enormous losses and the expenditure of vast sums of money, yet go absolutely unpunished!
The gypsy moth is a case in point. This winged calamity was imported at Maiden, Massachusetts, near Boston, by a French entomologist, Mr. Leopold Trouvelot, in 1868 or 69. History records the fact that the man of science did not purposely set free the pest. He was endeavoring with live specimens to find a moth that would produce a cocoon of commercial value to America, and a sudden gust of wind blew out of his study, through an open window, his living and breeding specimens of the gypsy moth. The moth itself is not bad to look at, but its larvae is a great, overgrown brute with an appetite like a hog. Immediately Mr. Trouvelot sought to recover his specimens, and when he failed to find them all, like a man of real honor, he notified the State authorities of the accident. Every effort was made to recover all the specimens, but enough escaped to produce progeny that soon became a scourge to the trees of Massachusetts. The method of the big, nasty-looking mottled-brown caterpillar was very simple. It devoured the entire foliage of every tree that grew in its sphere of influence.
The gypsy moth spread with alarming rapidity and persistence. In course of time, the state authorities of Massachusetts were forced to begin a relentless war upon it, by poisonous sprays and by fire. It was awful! Up to this date (1912) the New England states and the United States Government service have expended in fighting this pest about $7,680,000!
The spread of this pest has been retarded, but the gypsy moth never will be wholly stamped out. Today it exists in Rhode Island, Connecticut, and New Hampshire, and it is due to reach New York at an early date. It is steadily spreading in three directions from Boston, its original point of departure, and when it strikes the State of New York, we, too, will begin to pay dearly for the Trouvelot experiment.
How does the author feel about Howell?
Adapted from “Introduced Species That Have Become Pests” in Our Vanishing Wild Life, Its Extermination and Protection by William Temple Hornaday (1913)
The man who successfully transplants or "introduces" into a new habitat any persistent species of living thing assumes a very grave responsibility. Every introduced species is doubtful gravel until panned out. The enormous losses that have been inflicted upon the world through the perpetuation of follies with wild vertebrates and insects would, if added together, be enough to purchase a principality. The most aggravating feature of these follies in transplantation is that never yet have they been made severely punishable. We are just as careless and easygoing on this point as we were about the government of the Yellowstone Park in the days when Howell and other poachers destroyed our first national bison herd, and when caught red-handed—as Howell was, skinning seven Park bison cows—could not be punished for it, because there was no penalty prescribed by any law. Today, there is a way in which any revengeful person could inflict enormous damage on the entire South, at no cost to himself, involve those states in enormous losses and the expenditure of vast sums of money, yet go absolutely unpunished!
The gypsy moth is a case in point. This winged calamity was imported at Maiden, Massachusetts, near Boston, by a French entomologist, Mr. Leopold Trouvelot, in 1868 or 69. History records the fact that the man of science did not purposely set free the pest. He was endeavoring with live specimens to find a moth that would produce a cocoon of commercial value to America, and a sudden gust of wind blew out of his study, through an open window, his living and breeding specimens of the gypsy moth. The moth itself is not bad to look at, but its larvae is a great, overgrown brute with an appetite like a hog. Immediately Mr. Trouvelot sought to recover his specimens, and when he failed to find them all, like a man of real honor, he notified the State authorities of the accident. Every effort was made to recover all the specimens, but enough escaped to produce progeny that soon became a scourge to the trees of Massachusetts. The method of the big, nasty-looking mottled-brown caterpillar was very simple. It devoured the entire foliage of every tree that grew in its sphere of influence.
The gypsy moth spread with alarming rapidity and persistence. In course of time, the state authorities of Massachusetts were forced to begin a relentless war upon it, by poisonous sprays and by fire. It was awful! Up to this date (1912) the New England states and the United States Government service have expended in fighting this pest about $7,680,000!
The spread of this pest has been retarded, but the gypsy moth never will be wholly stamped out. Today it exists in Rhode Island, Connecticut, and New Hampshire, and it is due to reach New York at an early date. It is steadily spreading in three directions from Boston, its original point of departure, and when it strikes the State of New York, we, too, will begin to pay dearly for the Trouvelot experiment.
How does the author feel about Howell?
Let’s look at the part of the first paragraph in which the author brings up Howell, paying attention to why he does so:
“The most aggravating feature of these follies in transplantation is that never yet have they been made severely punishable. We are just as careless and easygoing on this point as we were about the government of the Yellowstone Park in the days when Howell and other poachers destroyed our first national bison herd, and when caught red-handed—as Howell was, skinning seven Park bison cows—could not be punished for it, because there was no penalty prescribed by any law.”
In mentioning Howell, the author is providing an example supporting his argument that harsher legal penalties are necessary for those who harm the environment. The author describes Howell as a “poacher” who “destroyed our first national bison herd” and was “caught red-handed.” From this, we can tell that the best answer choice is “the author greatly dislikes Howell for his audacious disrespect for nature.”
One of the other answer choices attempts to get you to confuse Howell with Mr. Trouvelot, who released the gypsy moths—don’t fall for that! Check the passage if you are worried at all about confusing the two so you can avoid pitfall answers like that one.
Let’s look at the part of the first paragraph in which the author brings up Howell, paying attention to why he does so:
“The most aggravating feature of these follies in transplantation is that never yet have they been made severely punishable. We are just as careless and easygoing on this point as we were about the government of the Yellowstone Park in the days when Howell and other poachers destroyed our first national bison herd, and when caught red-handed—as Howell was, skinning seven Park bison cows—could not be punished for it, because there was no penalty prescribed by any law.”
In mentioning Howell, the author is providing an example supporting his argument that harsher legal penalties are necessary for those who harm the environment. The author describes Howell as a “poacher” who “destroyed our first national bison herd” and was “caught red-handed.” From this, we can tell that the best answer choice is “the author greatly dislikes Howell for his audacious disrespect for nature.”
One of the other answer choices attempts to get you to confuse Howell with Mr. Trouvelot, who released the gypsy moths—don’t fall for that! Check the passage if you are worried at all about confusing the two so you can avoid pitfall answers like that one.
Compare your answer with the correct one above
Adapted from "How Animals Spend the Winter" by W. S. Blatchley in A Book of Natural History (1902, ed. David Starr Jordan)
One of the greatest problems that each of the living forms about us has had to solve, during the years of its existence on earth, is how best to perpetuate its kind during that cold season that once each year, in our temperate zone, is bound to come. Many are the solutions to this problem. Each form of life has, as it were, solved it best to suit its own peculiar case, and to the earnest student of Nature there is nothing more interesting than to pry into these solutions and note how varied, strange, and wonderful they are.
To fully appreciate some of the facts mentioned below it must be borne in mind that there is no such thing as “spontaneous generation” of life. Every cell is the offspring of a pre-existing cell. Hence every weed that next season will spring up and provoke the farmer’s ire, and every insect that will then make life almost intolerable for man or beast, exists throughout the winter in some form.
Beginning with the earthworms and their kindred, we find that at the approach of winter they burrow deep down where the icy breath of the frost never reaches, and there they live, during the cold season, a life of comparative quiet. That they are exceedingly sensitive to warmth, however, may be proven by the fact that when a warm rain comes some night in February or March, thawing out the crust of the earth, the next morning reveals in our dooryards the mouths of hundreds of the pits or burrows of these primitive tillers of the soil, each surrounded by a little pile of pellets, the castings of the active artisans of the pits during the night before.
If we will get up before dawn on such a morning we can find the worms crawling actively about over the surface of the ground, but when the first signs of day appear they seek once more their protective burrows, and only an occasional belated individual serves as a breakfast for the early birds.
The author’s attitude towards the subject matter is primarily one of .
Adapted from "How Animals Spend the Winter" by W. S. Blatchley in A Book of Natural History (1902, ed. David Starr Jordan)
One of the greatest problems that each of the living forms about us has had to solve, during the years of its existence on earth, is how best to perpetuate its kind during that cold season that once each year, in our temperate zone, is bound to come. Many are the solutions to this problem. Each form of life has, as it were, solved it best to suit its own peculiar case, and to the earnest student of Nature there is nothing more interesting than to pry into these solutions and note how varied, strange, and wonderful they are.
To fully appreciate some of the facts mentioned below it must be borne in mind that there is no such thing as “spontaneous generation” of life. Every cell is the offspring of a pre-existing cell. Hence every weed that next season will spring up and provoke the farmer’s ire, and every insect that will then make life almost intolerable for man or beast, exists throughout the winter in some form.
Beginning with the earthworms and their kindred, we find that at the approach of winter they burrow deep down where the icy breath of the frost never reaches, and there they live, during the cold season, a life of comparative quiet. That they are exceedingly sensitive to warmth, however, may be proven by the fact that when a warm rain comes some night in February or March, thawing out the crust of the earth, the next morning reveals in our dooryards the mouths of hundreds of the pits or burrows of these primitive tillers of the soil, each surrounded by a little pile of pellets, the castings of the active artisans of the pits during the night before.
If we will get up before dawn on such a morning we can find the worms crawling actively about over the surface of the ground, but when the first signs of day appear they seek once more their protective burrows, and only an occasional belated individual serves as a breakfast for the early birds.
The author’s attitude towards the subject matter is primarily one of .
The phrase in which the author’s attitude can be most clearly seen is “Each form of life has, as it were, solved it best to suit its own peculiar case, and to the earnest student of Nature there is nothing more interesting than to pry into these solutions and note how varied, strange, and wonderful they are.” Here the author expresses the “peculiar” and “strange” things of which “there is nothing more interesting” and “wonderful.” From the use of these words and phrases and an understanding of the overall style of the text, we can conclude that the author’s attitude is primarily one of “curiosity and wonder.” To provide further help, “impudence” means rudeness and disrespect; “criticism” means pointing out flaws in something or someone; “fascination” means great interest in something, and “timidity” means shyness or meekness.
The phrase in which the author’s attitude can be most clearly seen is “Each form of life has, as it were, solved it best to suit its own peculiar case, and to the earnest student of Nature there is nothing more interesting than to pry into these solutions and note how varied, strange, and wonderful they are.” Here the author expresses the “peculiar” and “strange” things of which “there is nothing more interesting” and “wonderful.” From the use of these words and phrases and an understanding of the overall style of the text, we can conclude that the author’s attitude is primarily one of “curiosity and wonder.” To provide further help, “impudence” means rudeness and disrespect; “criticism” means pointing out flaws in something or someone; “fascination” means great interest in something, and “timidity” means shyness or meekness.
Compare your answer with the correct one above
Adapted from "The Greatest Sea-Wave Ever Known" by R. A. Proctor in Wonders of Earth, Sea, and Sky (1902, ed. Edward Singleton Holden)
Far on beyond the shores of New Zealand the great wave coursed, reaching at length the coast of Australia. At dawn of August 14th Moreton Bay was visited by five well-marked waves. At Newcastle, on the Hunter River, the sea rose and fell several times in a remarkable manner, the oscillatory motion commencing at half-past six in the morning. But the most significant evidence of the extent to which the sea-wave traveled in this direction was afforded at Port Fairy, Belfast, South Victoria. Here the oscillation of the water was distinctly perceived at midday on August 14th; and yet, to reach this point, the sea-wave must not only have traveled on a circuitous course nearly equal in length to half the circumference of the earth, but must have passed through Bass's Straits, between Australia and Van Diemen's Land, and so have lost a considerable portion of its force and dimensions. When we remember that had not the effects of the earth-shock on the water been limited by the shores of South America, a wave of disturbance equal in extent to that which traveled westward would have swept toward the east, we see that the force of the shock was sufficient to have disturbed the waters of an ocean covering the whole surface of the earth. For the sea-waves which reached Yokohama in one direction and Port Fairy in another had each traversed a distance nearly equal to half the earth's circumference; so that if the surface of the earth were all sea, waves setting out in opposite directions from the center of disturbance would have met each other at the antipodes of their starting-point.
It is impossible to contemplate the effects which followed the great earthquake—the passage of a sea-wave of enormous volume over fully one third of the earth's surface, and the force with which, on the farthermost limits of its range, the wave rolled in upon shores more than ten thousand miles from its starting-place—without feeling that those geologists are right who deny that the subterranean forces of the earth are diminishing in intensity. It may be difficult, perhaps, to look on the effects which are ascribed to ancient earth-throes without imagining for a while that the power of modern earthquakes is altogether less. But when we consider fairly the share which time had in those ancient processes of change, when we see that while mountain ranges were being upheaved or valleys depressed to their present position, species after species, and type after type appeared on the earth, and lived out the long lives which belong to species and to types, we are recalled to the remembrance of the great work which the earth's subterranean forces are still engaged upon. Even now continents are being slowly depressed or upheaved; even now mountain ranges are being raised to a new level, tablelands are in process of formation, and great valleys are being gradually scooped out. It may need an occasional outburst, such as the earthquake of August, 1868, to remind us that great forces are at work beneath the earth's surface. But, in reality, the signs of change have long been noted. Old shorelines shift their place, old soundings vary; the sea advances in one place and retires in another; on every side Nature's plastic hand is at work modeling and remodeling the earth, in order that it may always be a fit abode for those who are to dwell upon it.
The author’s attitude towards the sea-wave could best be described as .
Adapted from "The Greatest Sea-Wave Ever Known" by R. A. Proctor in Wonders of Earth, Sea, and Sky (1902, ed. Edward Singleton Holden)
Far on beyond the shores of New Zealand the great wave coursed, reaching at length the coast of Australia. At dawn of August 14th Moreton Bay was visited by five well-marked waves. At Newcastle, on the Hunter River, the sea rose and fell several times in a remarkable manner, the oscillatory motion commencing at half-past six in the morning. But the most significant evidence of the extent to which the sea-wave traveled in this direction was afforded at Port Fairy, Belfast, South Victoria. Here the oscillation of the water was distinctly perceived at midday on August 14th; and yet, to reach this point, the sea-wave must not only have traveled on a circuitous course nearly equal in length to half the circumference of the earth, but must have passed through Bass's Straits, between Australia and Van Diemen's Land, and so have lost a considerable portion of its force and dimensions. When we remember that had not the effects of the earth-shock on the water been limited by the shores of South America, a wave of disturbance equal in extent to that which traveled westward would have swept toward the east, we see that the force of the shock was sufficient to have disturbed the waters of an ocean covering the whole surface of the earth. For the sea-waves which reached Yokohama in one direction and Port Fairy in another had each traversed a distance nearly equal to half the earth's circumference; so that if the surface of the earth were all sea, waves setting out in opposite directions from the center of disturbance would have met each other at the antipodes of their starting-point.
It is impossible to contemplate the effects which followed the great earthquake—the passage of a sea-wave of enormous volume over fully one third of the earth's surface, and the force with which, on the farthermost limits of its range, the wave rolled in upon shores more than ten thousand miles from its starting-place—without feeling that those geologists are right who deny that the subterranean forces of the earth are diminishing in intensity. It may be difficult, perhaps, to look on the effects which are ascribed to ancient earth-throes without imagining for a while that the power of modern earthquakes is altogether less. But when we consider fairly the share which time had in those ancient processes of change, when we see that while mountain ranges were being upheaved or valleys depressed to their present position, species after species, and type after type appeared on the earth, and lived out the long lives which belong to species and to types, we are recalled to the remembrance of the great work which the earth's subterranean forces are still engaged upon. Even now continents are being slowly depressed or upheaved; even now mountain ranges are being raised to a new level, tablelands are in process of formation, and great valleys are being gradually scooped out. It may need an occasional outburst, such as the earthquake of August, 1868, to remind us that great forces are at work beneath the earth's surface. But, in reality, the signs of change have long been noted. Old shorelines shift their place, old soundings vary; the sea advances in one place and retires in another; on every side Nature's plastic hand is at work modeling and remodeling the earth, in order that it may always be a fit abode for those who are to dwell upon it.
The author’s attitude towards the sea-wave could best be described as .
The author is primarily astonished and awestruck by the intensity and extent of the sea-wave and the forces at work within the Earth’s interior. This can be seen in excerpts such as “the sea rose and fell several times in a remarkable manner" and the manner in which the author expresses “awe” at the distance traveled by the sea-wave in spite of the obstacles presented by the formation of the land. It might be reasonable to state that the author’s attitude is “reverence,” but this means deep respect, and whilst the author clearly has “respect” for the working of the Earth’s interior, he is more “astonished” and full of “awe” than he is “reverent.” Likewise, the use of the word “contemplate” at the beginning of the second paragraph might suggest the author is adopting an attitude of “introspection"; however, this is closer to the author’s attitude on the conclusions that can be derived from the awe-inspiring and intense power of the sea-wave, rather than his attitude towards the sea-wave itself.
The author is primarily astonished and awestruck by the intensity and extent of the sea-wave and the forces at work within the Earth’s interior. This can be seen in excerpts such as “the sea rose and fell several times in a remarkable manner" and the manner in which the author expresses “awe” at the distance traveled by the sea-wave in spite of the obstacles presented by the formation of the land. It might be reasonable to state that the author’s attitude is “reverence,” but this means deep respect, and whilst the author clearly has “respect” for the working of the Earth’s interior, he is more “astonished” and full of “awe” than he is “reverent.” Likewise, the use of the word “contemplate” at the beginning of the second paragraph might suggest the author is adopting an attitude of “introspection"; however, this is closer to the author’s attitude on the conclusions that can be derived from the awe-inspiring and intense power of the sea-wave, rather than his attitude towards the sea-wave itself.
Compare your answer with the correct one above
Adapted from “The Stars” by Sir Robert S. Ball in Wonders of Earth, Sea, and Sky (1902, ed. Edward Singleton Holden)
The group of bodies that cluster around our sun forms a little island in the extent of infinite space. We may illustrate this by drawing a map in which we shall endeavor to show the stars placed at their proper relative distances.
We first open the compasses one inch, and thus draw a little circle to represent the path of Earth. We are not going to put in all the planets; we take Neptune, the outermost, at once. To draw its path, I open the compasses to thirty inches, and draw a circle with that radius. That will do for our solar system, though the comets no doubt will roam beyond these limits.
To complete our map, we ought to put in some stars. There are a hundred million to choose from, and we shall begin with the brightest. It is often called the Dog Star, but astronomers know it better as Sirius. Let us see where it is to be placed on our map. Sirius is a good deal further off than Neptune; so I try at the edge of the drawing-board; I have got a method of making a little calculation that I do not intend to trouble you with, but I can assure you that the results it leads me to are quite correct; they show me that this board is not big enough. But could a board which was big enough fit into this lecture theatre? No; in fact, the board would have to go out through the wall of the theatre, out through London. Indeed, big as London is, it would not be large enough to contain the drawing-board that I should require. It would have to stretch about twenty miles from where we are now assembled. We may therefore dismiss any hope of making a practical map of our system on this scale if Sirius is to have its proper place.
Let us, then, take some other star. We shall naturally try with the nearest of all. It is one that we do not know in this part of the world, but those that live in the southern hemisphere are well acquainted with it. The name of this star is Alpha Centauri. Even for this star, we should require a drawing three or four miles long if the distance from the earth to the sun is to be taken as one inch.
You see what an isolated position our sun and its planets occupy. The stars might be very troublesome neighbors if they were very much closer to our system; it is therefore well they are so far off. If they were near at hand, they would drag us into unpleasantly great heat by bringing us too close to the sun, or produce a coolness by pulling us away from the sun, which would be quite as disagreeable.
The author primarily expects his audience to his findings.
Adapted from “The Stars” by Sir Robert S. Ball in Wonders of Earth, Sea, and Sky (1902, ed. Edward Singleton Holden)
The group of bodies that cluster around our sun forms a little island in the extent of infinite space. We may illustrate this by drawing a map in which we shall endeavor to show the stars placed at their proper relative distances.
We first open the compasses one inch, and thus draw a little circle to represent the path of Earth. We are not going to put in all the planets; we take Neptune, the outermost, at once. To draw its path, I open the compasses to thirty inches, and draw a circle with that radius. That will do for our solar system, though the comets no doubt will roam beyond these limits.
To complete our map, we ought to put in some stars. There are a hundred million to choose from, and we shall begin with the brightest. It is often called the Dog Star, but astronomers know it better as Sirius. Let us see where it is to be placed on our map. Sirius is a good deal further off than Neptune; so I try at the edge of the drawing-board; I have got a method of making a little calculation that I do not intend to trouble you with, but I can assure you that the results it leads me to are quite correct; they show me that this board is not big enough. But could a board which was big enough fit into this lecture theatre? No; in fact, the board would have to go out through the wall of the theatre, out through London. Indeed, big as London is, it would not be large enough to contain the drawing-board that I should require. It would have to stretch about twenty miles from where we are now assembled. We may therefore dismiss any hope of making a practical map of our system on this scale if Sirius is to have its proper place.
Let us, then, take some other star. We shall naturally try with the nearest of all. It is one that we do not know in this part of the world, but those that live in the southern hemisphere are well acquainted with it. The name of this star is Alpha Centauri. Even for this star, we should require a drawing three or four miles long if the distance from the earth to the sun is to be taken as one inch.
You see what an isolated position our sun and its planets occupy. The stars might be very troublesome neighbors if they were very much closer to our system; it is therefore well they are so far off. If they were near at hand, they would drag us into unpleasantly great heat by bringing us too close to the sun, or produce a coolness by pulling us away from the sun, which would be quite as disagreeable.
The author primarily expects his audience to his findings.
In order to answer this question, you have to be able to pay attention to the correct clue that the author provides. This requires careful reading of the whole text. In the middle of the first paragraph, the author says, “Sirius is a good deal further off than Neptune; so I try at the edge of the drawing-board; I have got a method of making a little calculation that I do not intend to trouble you with, but I can assure you that the results it leads me to are quite correct; they show me that this board is not big enough.” You can see that the author assumes his audience will “trust” his findings on faith alone because the author does not offer up the methodology he employs. He simply says “I have got a method . . . I do not intend to trouble you with \[it\], but I can assure you that the results . . . are quite correct.” To provide further help, “deride” means mock or make fun of, and “laud” means praise.
In order to answer this question, you have to be able to pay attention to the correct clue that the author provides. This requires careful reading of the whole text. In the middle of the first paragraph, the author says, “Sirius is a good deal further off than Neptune; so I try at the edge of the drawing-board; I have got a method of making a little calculation that I do not intend to trouble you with, but I can assure you that the results it leads me to are quite correct; they show me that this board is not big enough.” You can see that the author assumes his audience will “trust” his findings on faith alone because the author does not offer up the methodology he employs. He simply says “I have got a method . . . I do not intend to trouble you with \[it\], but I can assure you that the results . . . are quite correct.” To provide further help, “deride” means mock or make fun of, and “laud” means praise.
Compare your answer with the correct one above
Adapted from “Introduced Species That Have Become Pests” in Our Vanishing Wild Life, Its Extermination and Protection by William Temple Hornaday (1913)
The man who successfully transplants or "introduces" into a new habitat any persistent species of living thing assumes a very grave responsibility. Every introduced species is doubtful gravel until panned out. The enormous losses that have been inflicted upon the world through the perpetuation of follies with wild vertebrates and insects would, if added together, be enough to purchase a principality. The most aggravating feature of these follies in transplantation is that never yet have they been made severely punishable. We are just as careless and easygoing on this point as we were about the government of the Yellowstone Park in the days when Howell and other poachers destroyed our first national bison herd, and when caught red-handed—as Howell was, skinning seven Park bison cows—could not be punished for it, because there was no penalty prescribed by any law. Today, there is a way in which any revengeful person could inflict enormous damage on the entire South, at no cost to himself, involve those states in enormous losses and the expenditure of vast sums of money, yet go absolutely unpunished!
The gypsy moth is a case in point. This winged calamity was imported at Maiden, Massachusetts, near Boston, by a French entomologist, Mr. Leopold Trouvelot, in 1868 or 69. History records the fact that the man of science did not purposely set free the pest. He was endeavoring with live specimens to find a moth that would produce a cocoon of commercial value to America, and a sudden gust of wind blew out of his study, through an open window, his living and breeding specimens of the gypsy moth. The moth itself is not bad to look at, but its larvae is a great, overgrown brute with an appetite like a hog. Immediately Mr. Trouvelot sought to recover his specimens, and when he failed to find them all, like a man of real honor, he notified the State authorities of the accident. Every effort was made to recover all the specimens, but enough escaped to produce progeny that soon became a scourge to the trees of Massachusetts. The method of the big, nasty-looking mottled-brown caterpillar was very simple. It devoured the entire foliage of every tree that grew in its sphere of influence.
The gypsy moth spread with alarming rapidity and persistence. In course of time, the state authorities of Massachusetts were forced to begin a relentless war upon it, by poisonous sprays and by fire. It was awful! Up to this date (1912) the New England states and the United States Government service have expended in fighting this pest about $7,680,000!
The spread of this pest has been retarded, but the gypsy moth never will be wholly stamped out. Today it exists in Rhode Island, Connecticut, and New Hampshire, and it is due to reach New York at an early date. It is steadily spreading in three directions from Boston, its original point of departure, and when it strikes the State of New York, we, too, will begin to pay dearly for the Trouvelot experiment.
Based on the context in which it is used, what is the most likely definition of the underlined word “entomologist”?
Adapted from “Introduced Species That Have Become Pests” in Our Vanishing Wild Life, Its Extermination and Protection by William Temple Hornaday (1913)
The man who successfully transplants or "introduces" into a new habitat any persistent species of living thing assumes a very grave responsibility. Every introduced species is doubtful gravel until panned out. The enormous losses that have been inflicted upon the world through the perpetuation of follies with wild vertebrates and insects would, if added together, be enough to purchase a principality. The most aggravating feature of these follies in transplantation is that never yet have they been made severely punishable. We are just as careless and easygoing on this point as we were about the government of the Yellowstone Park in the days when Howell and other poachers destroyed our first national bison herd, and when caught red-handed—as Howell was, skinning seven Park bison cows—could not be punished for it, because there was no penalty prescribed by any law. Today, there is a way in which any revengeful person could inflict enormous damage on the entire South, at no cost to himself, involve those states in enormous losses and the expenditure of vast sums of money, yet go absolutely unpunished!
The gypsy moth is a case in point. This winged calamity was imported at Maiden, Massachusetts, near Boston, by a French entomologist, Mr. Leopold Trouvelot, in 1868 or 69. History records the fact that the man of science did not purposely set free the pest. He was endeavoring with live specimens to find a moth that would produce a cocoon of commercial value to America, and a sudden gust of wind blew out of his study, through an open window, his living and breeding specimens of the gypsy moth. The moth itself is not bad to look at, but its larvae is a great, overgrown brute with an appetite like a hog. Immediately Mr. Trouvelot sought to recover his specimens, and when he failed to find them all, like a man of real honor, he notified the State authorities of the accident. Every effort was made to recover all the specimens, but enough escaped to produce progeny that soon became a scourge to the trees of Massachusetts. The method of the big, nasty-looking mottled-brown caterpillar was very simple. It devoured the entire foliage of every tree that grew in its sphere of influence.
The gypsy moth spread with alarming rapidity and persistence. In course of time, the state authorities of Massachusetts were forced to begin a relentless war upon it, by poisonous sprays and by fire. It was awful! Up to this date (1912) the New England states and the United States Government service have expended in fighting this pest about $7,680,000!
The spread of this pest has been retarded, but the gypsy moth never will be wholly stamped out. Today it exists in Rhode Island, Connecticut, and New Hampshire, and it is due to reach New York at an early date. It is steadily spreading in three directions from Boston, its original point of departure, and when it strikes the State of New York, we, too, will begin to pay dearly for the Trouvelot experiment.
Based on the context in which it is used, what is the most likely definition of the underlined word “entomologist”?
The word “entomologist” is used in the following part of the passage:
“The Gypsy Moth is a case in point. This winged calamity was imported at Maiden, Massachusetts, near Boston, by a French entomologist, Mr. Leopold Trouvelot, in 1868 or 69.”
“Entomologist” is describing “Mr. Leopold Trouvelot,” so it cannot mean “a type of insect that eats other insects.” Nothing in the passage suggests that Mr. Trouvelot drew insects, so we can discard “someone who draws pictures of insects” as an answer choice. The answer “someone who causes and then solves a problem” doesn’t make sense either; while Mr. Trouvelot causes a problem by introducing the gypsy moth to the United States, he isn’t able to solve it. This leaves us with two answer choices: “a scientist who studies invasive species” and “a scientist who studies insects.” Nothing suggests that Mr. Trouvelot is a scientist who studies invasive species; indeed, at this point in the passage, the gypsy moth hasn’t even been released yet, so it is debatable whether we could call it an invasive species before it “invades.”
The word “entomologist” is used in the following part of the passage:
“The Gypsy Moth is a case in point. This winged calamity was imported at Maiden, Massachusetts, near Boston, by a French entomologist, Mr. Leopold Trouvelot, in 1868 or 69.”
“Entomologist” is describing “Mr. Leopold Trouvelot,” so it cannot mean “a type of insect that eats other insects.” Nothing in the passage suggests that Mr. Trouvelot drew insects, so we can discard “someone who draws pictures of insects” as an answer choice. The answer “someone who causes and then solves a problem” doesn’t make sense either; while Mr. Trouvelot causes a problem by introducing the gypsy moth to the United States, he isn’t able to solve it. This leaves us with two answer choices: “a scientist who studies invasive species” and “a scientist who studies insects.” Nothing suggests that Mr. Trouvelot is a scientist who studies invasive species; indeed, at this point in the passage, the gypsy moth hasn’t even been released yet, so it is debatable whether we could call it an invasive species before it “invades.”
Compare your answer with the correct one above
Adapted from "The Greatest Sea-Wave Ever Known" by R. A. Proctor in Wonders of Earth, Sea, and Sky (1902, ed. Edward Singleton Holden)
Far on beyond the shores of New Zealand the great wave coursed, reaching at length the coast of Australia. At dawn of August 14th Moreton Bay was visited by five well-marked waves. At Newcastle, on the Hunter River, the sea rose and fell several times in a remarkable manner, the oscillatory motion commencing at half-past six in the morning. But the most significant evidence of the extent to which the sea-wave traveled in this direction was afforded at Port Fairy, Belfast, South Victoria. Here the oscillation of the water was distinctly perceived at midday on August 14th; and yet, to reach this point, the sea-wave must not only have traveled on a circuitous course nearly equal in length to half the circumference of the earth, but must have passed through Bass's Straits, between Australia and Van Diemen's Land, and so have lost a considerable portion of its force and dimensions. When we remember that had not the effects of the earth-shock on the water been limited by the shores of South America, a wave of disturbance equal in extent to that which traveled westward would have swept toward the east, we see that the force of the shock was sufficient to have disturbed the waters of an ocean covering the whole surface of the earth. For the sea-waves which reached Yokohama in one direction and Port Fairy in another had each traversed a distance nearly equal to half the earth's circumference; so that if the surface of the earth were all sea, waves setting out in opposite directions from the center of disturbance would have met each other at the antipodes of their starting-point.
It is impossible to contemplate the effects which followed the great earthquake—the passage of a sea-wave of enormous volume over fully one third of the earth's surface, and the force with which, on the farthermost limits of its range, the wave rolled in upon shores more than ten thousand miles from its starting-place—without feeling that those geologists are right who deny that the subterranean forces of the earth are diminishing in intensity. It may be difficult, perhaps, to look on the effects which are ascribed to ancient earth-throes without imagining for a while that the power of modern earthquakes is altogether less. But when we consider fairly the share which time had in those ancient processes of change, when we see that while mountain ranges were being upheaved or valleys depressed to their present position, species after species, and type after type appeared on the earth, and lived out the long lives which belong to species and to types, we are recalled to the remembrance of the great work which the earth's subterranean forces are still engaged upon. Even now continents are being slowly depressed or upheaved; even now mountain ranges are being raised to a new level, tablelands are in process of formation, and great valleys are being gradually scooped out. It may need an occasional outburst, such as the earthquake of August, 1868, to remind us that great forces are at work beneath the earth's surface. But, in reality, the signs of change have long been noted. Old shorelines shift their place, old soundings vary; the sea advances in one place and retires in another; on every side Nature's plastic hand is at work modeling and remodeling the earth, in order that it may always be a fit abode for those who are to dwell upon it.
The underlined word “abode” in the passage's last line most nearly means .
Adapted from "The Greatest Sea-Wave Ever Known" by R. A. Proctor in Wonders of Earth, Sea, and Sky (1902, ed. Edward Singleton Holden)
Far on beyond the shores of New Zealand the great wave coursed, reaching at length the coast of Australia. At dawn of August 14th Moreton Bay was visited by five well-marked waves. At Newcastle, on the Hunter River, the sea rose and fell several times in a remarkable manner, the oscillatory motion commencing at half-past six in the morning. But the most significant evidence of the extent to which the sea-wave traveled in this direction was afforded at Port Fairy, Belfast, South Victoria. Here the oscillation of the water was distinctly perceived at midday on August 14th; and yet, to reach this point, the sea-wave must not only have traveled on a circuitous course nearly equal in length to half the circumference of the earth, but must have passed through Bass's Straits, between Australia and Van Diemen's Land, and so have lost a considerable portion of its force and dimensions. When we remember that had not the effects of the earth-shock on the water been limited by the shores of South America, a wave of disturbance equal in extent to that which traveled westward would have swept toward the east, we see that the force of the shock was sufficient to have disturbed the waters of an ocean covering the whole surface of the earth. For the sea-waves which reached Yokohama in one direction and Port Fairy in another had each traversed a distance nearly equal to half the earth's circumference; so that if the surface of the earth were all sea, waves setting out in opposite directions from the center of disturbance would have met each other at the antipodes of their starting-point.
It is impossible to contemplate the effects which followed the great earthquake—the passage of a sea-wave of enormous volume over fully one third of the earth's surface, and the force with which, on the farthermost limits of its range, the wave rolled in upon shores more than ten thousand miles from its starting-place—without feeling that those geologists are right who deny that the subterranean forces of the earth are diminishing in intensity. It may be difficult, perhaps, to look on the effects which are ascribed to ancient earth-throes without imagining for a while that the power of modern earthquakes is altogether less. But when we consider fairly the share which time had in those ancient processes of change, when we see that while mountain ranges were being upheaved or valleys depressed to their present position, species after species, and type after type appeared on the earth, and lived out the long lives which belong to species and to types, we are recalled to the remembrance of the great work which the earth's subterranean forces are still engaged upon. Even now continents are being slowly depressed or upheaved; even now mountain ranges are being raised to a new level, tablelands are in process of formation, and great valleys are being gradually scooped out. It may need an occasional outburst, such as the earthquake of August, 1868, to remind us that great forces are at work beneath the earth's surface. But, in reality, the signs of change have long been noted. Old shorelines shift their place, old soundings vary; the sea advances in one place and retires in another; on every side Nature's plastic hand is at work modeling and remodeling the earth, in order that it may always be a fit abode for those who are to dwell upon it.
The underlined word “abode” in the passage's last line most nearly means .
In context, the author says “Nature's plastic hand is at work modeling and remodeling the earth, in order that it may always be a fit abode for those who are to dwell upon it.” The word “dwell” means live. So, the author seems to be saying that nature is constantly reworking the earth in order to make it a fit “home” for those who live there. The word “abode” therefore means home.
In context, the author says “Nature's plastic hand is at work modeling and remodeling the earth, in order that it may always be a fit abode for those who are to dwell upon it.” The word “dwell” means live. So, the author seems to be saying that nature is constantly reworking the earth in order to make it a fit “home” for those who live there. The word “abode” therefore means home.
Compare your answer with the correct one above
Adapted from "The Colors of Animals" by Sir John Lubbock in A Book of Natural History (1902, ed. David Starr Jordan)
The color of animals is by no means a matter of chance; it depends on many considerations, but in the majority of cases tends to protect the animal from danger by rendering it less conspicuous. Perhaps it may be said that if coloring is mainly protective, there ought to be but few brightly colored animals. There are, however, not a few cases in which vivid colors are themselves protective. The kingfisher itself, though so brightly colored, is by no means easy to see. The blue harmonizes with the water, and the bird as it darts along the stream looks almost like a flash of sunlight.
Desert animals are generally the color of the desert. Thus, for instance, the lion, the antelope, and the wild donkey are all sand-colored. “Indeed,” says Canon Tristram, “in the desert, where neither trees, brushwood, nor even undulation of the surface afford the slightest protection to its foes, a modification of color assimilated to that of the surrounding country is absolutely necessary. Hence, without exception, the upper plumage of every bird, and also the fur of all the smaller mammals and the skin of all the snakes and lizards, is of one uniform sand color.”
The next point is the color of the mature caterpillars, some of which are brown. This probably makes the caterpillar even more conspicuous among the green leaves than would otherwise be the case. Let us see, then, whether the habits of the insect will throw any light upon the riddle. What would you do if you were a big caterpillar? Why, like most other defenseless creatures, you would feed by night, and lie concealed by day. So do these caterpillars. When the morning light comes, they creep down the stem of the food plant, and lie concealed among the thick herbage and dry sticks and leaves, near the ground, and it is obvious that under such circumstances the brown color really becomes a protection. It might indeed be argued that the caterpillars, having become brown, concealed themselves on the ground, and that we were reversing the state of things. But this is not so, because, while we may say as a general rule that large caterpillars feed by night and lie concealed by day, it is by no means always the case that they are brown; some of them still retaining the green color. We may then conclude that the habit of concealing themselves by day came first, and that the brown color is a later adaptation.
The underlined word “conspicuous” most nearly means .
Adapted from "The Colors of Animals" by Sir John Lubbock in A Book of Natural History (1902, ed. David Starr Jordan)
The color of animals is by no means a matter of chance; it depends on many considerations, but in the majority of cases tends to protect the animal from danger by rendering it less conspicuous. Perhaps it may be said that if coloring is mainly protective, there ought to be but few brightly colored animals. There are, however, not a few cases in which vivid colors are themselves protective. The kingfisher itself, though so brightly colored, is by no means easy to see. The blue harmonizes with the water, and the bird as it darts along the stream looks almost like a flash of sunlight.
Desert animals are generally the color of the desert. Thus, for instance, the lion, the antelope, and the wild donkey are all sand-colored. “Indeed,” says Canon Tristram, “in the desert, where neither trees, brushwood, nor even undulation of the surface afford the slightest protection to its foes, a modification of color assimilated to that of the surrounding country is absolutely necessary. Hence, without exception, the upper plumage of every bird, and also the fur of all the smaller mammals and the skin of all the snakes and lizards, is of one uniform sand color.”
The next point is the color of the mature caterpillars, some of which are brown. This probably makes the caterpillar even more conspicuous among the green leaves than would otherwise be the case. Let us see, then, whether the habits of the insect will throw any light upon the riddle. What would you do if you were a big caterpillar? Why, like most other defenseless creatures, you would feed by night, and lie concealed by day. So do these caterpillars. When the morning light comes, they creep down the stem of the food plant, and lie concealed among the thick herbage and dry sticks and leaves, near the ground, and it is obvious that under such circumstances the brown color really becomes a protection. It might indeed be argued that the caterpillars, having become brown, concealed themselves on the ground, and that we were reversing the state of things. But this is not so, because, while we may say as a general rule that large caterpillars feed by night and lie concealed by day, it is by no means always the case that they are brown; some of them still retaining the green color. We may then conclude that the habit of concealing themselves by day came first, and that the brown color is a later adaptation.
The underlined word “conspicuous” most nearly means .
The word “conspicuous” means obvious, easily noticed, or noticeable. However, if you did not know this, you can still answer the question correctly by examining the context in which "conspicuous" is used to try and decipher any clues the text provides about its meaning. The author, referring to the brown color of certain mature caterpillars, says, "This probably makes the caterpillar even more conspicuous among the green leaves than would otherwise be the case.” The author is saying that the caterpillar is brown and is among green leaves; it therefore makes sense that a brown creature on a green background would be more “noticeable” than a green creature on a green background. To provide further help, “menacing” means threatening or suggesting danger; “culpable” means at fault, responsible for; and “portentous” means ominous, suggesting that something (usually bad) will happen in the future.
The word “conspicuous” means obvious, easily noticed, or noticeable. However, if you did not know this, you can still answer the question correctly by examining the context in which "conspicuous" is used to try and decipher any clues the text provides about its meaning. The author, referring to the brown color of certain mature caterpillars, says, "This probably makes the caterpillar even more conspicuous among the green leaves than would otherwise be the case.” The author is saying that the caterpillar is brown and is among green leaves; it therefore makes sense that a brown creature on a green background would be more “noticeable” than a green creature on a green background. To provide further help, “menacing” means threatening or suggesting danger; “culpable” means at fault, responsible for; and “portentous” means ominous, suggesting that something (usually bad) will happen in the future.
Compare your answer with the correct one above
Adapted from The Principles of Breeding by S. L. Goodale (1861)
The Jersey cow, formerly known as the Alderney, is almost exclusively employed for dairy purposes, and may not be expected to give satisfaction for other uses. Their milk is richer than that of any other cows, and the butter made from it possesses a superior flavor and a deep rich color, and consequently commands an extraordinary price in all markets where good butter is appreciated.
Jersey cattle are of Norman origin, and are noted for their milking properties. The cows are generally very docile and gentle, but the males when past two or three years of age often become vicious and unmanageable. It is said that the cows fatten readily when dry.
There is no branch of cattle husbandry which promises better returns than the breeding and rearing of milch cows. In the vicinity of large towns and cities are many cows which having been culled from many miles around, on account of dairy properties, are considerably above the average, but taking the cows of the country together they do not compare favorably with the oxen. Farmers generally take more pride in their oxen, and strive to have as good or better than any of their neighbors, while if a cow will give milk enough to rear a large steer calf and a little besides, it is often deemed satisfactory.
The underlined word “docile” most nearly means .
Adapted from The Principles of Breeding by S. L. Goodale (1861)
The Jersey cow, formerly known as the Alderney, is almost exclusively employed for dairy purposes, and may not be expected to give satisfaction for other uses. Their milk is richer than that of any other cows, and the butter made from it possesses a superior flavor and a deep rich color, and consequently commands an extraordinary price in all markets where good butter is appreciated.
Jersey cattle are of Norman origin, and are noted for their milking properties. The cows are generally very docile and gentle, but the males when past two or three years of age often become vicious and unmanageable. It is said that the cows fatten readily when dry.
There is no branch of cattle husbandry which promises better returns than the breeding and rearing of milch cows. In the vicinity of large towns and cities are many cows which having been culled from many miles around, on account of dairy properties, are considerably above the average, but taking the cows of the country together they do not compare favorably with the oxen. Farmers generally take more pride in their oxen, and strive to have as good or better than any of their neighbors, while if a cow will give milk enough to rear a large steer calf and a little besides, it is often deemed satisfactory.
The underlined word “docile” most nearly means .
In context, the author says, “The cows are generally very docile and gentle, but the males, when past two or three years of age, often become vicious and unmanageable.” The use of the word “but” suggests that the cows mentioned in the first clause are the opposite of “vicious and unmanageable.” Also, the use of the word “gentle” suggests “docile” must mean something that is complementary to “gentle.” The combination of these clues should lead you to select the correct answer “obedient.” To provide further help, “docile” means able to be easily controlled and calm; “disobedient” means not obeying rules; and “morose” means sad and miserable.
In context, the author says, “The cows are generally very docile and gentle, but the males, when past two or three years of age, often become vicious and unmanageable.” The use of the word “but” suggests that the cows mentioned in the first clause are the opposite of “vicious and unmanageable.” Also, the use of the word “gentle” suggests “docile” must mean something that is complementary to “gentle.” The combination of these clues should lead you to select the correct answer “obedient.” To provide further help, “docile” means able to be easily controlled and calm; “disobedient” means not obeying rules; and “morose” means sad and miserable.
Compare your answer with the correct one above
dapted from “Introduced Species That Have Become Pests” in Our Vanishing Wild Life, Its Extermination and Protection by William Temple Hornaday (1913)
The man who successfully transplants or "introduces" into a new habitat any persistent species of living thing assumes a very grave responsibility. Every introduced species is doubtful gravel until panned out. The enormous losses that have been inflicted upon the world through the perpetuation of follies with wild vertebrates and insects would, if added together, be enough to purchase a principality. The most aggravating feature of these follies in transplantation is that never yet have they been made severely punishable. We are just as careless and easygoing on this point as we were about the government of the Yellowstone Park in the days when Howell and other poachers destroyed our first national bison herd, and when caught red-handed—as Howell was, skinning seven Park bison cows—could not be punished for it, because there was no penalty prescribed by any law. Today, there is a way in which any revengeful person could inflict enormous damage on the entire South, at no cost to himself, involve those states in enormous losses and the expenditure of vast sums of money, yet go absolutely unpunished!
The gypsy moth is a case in point. This winged calamity was imported at Maiden, Massachusetts, near Boston, by a French entomologist, Mr. Leopold Trouvelot, in 1868 or 69. History records the fact that the man of science did not purposely set free the pest. He was endeavoring with live specimens to find a moth that would produce a cocoon of commercial value to America, and a sudden gust of wind blew out of his study, through an open window, his living and breeding specimens of the gypsy moth. The moth itself is not bad to look at, but its larvae is a great, overgrown brute with an appetite like a hog. Immediately Mr. Trouvelot sought to recover his specimens, and when he failed to find them all, like a man of real honor, he notified the State authorities of the accident. Every effort was made to recover all the specimens, but enough escaped to produce progeny that soon became a scourge to the trees of Massachusetts. The method of the big, nasty-looking mottled-brown caterpillar was very simple. It devoured the entire foliage of every tree that grew in its sphere of influence.
The gypsy moth spread with alarming rapidity and persistence. In course of time, the state authorities of Massachusetts were forced to begin a relentless war upon it, by poisonous sprays and by fire. It was awful! Up to this date (1912) the New England states and the United States Government service have expended in fighting this pest about $7,680,000!
The spread of this pest has been retarded, but the gypsy moth never will be wholly stamped out. Today it exists in Rhode Island, Connecticut, and New Hampshire, and it is due to reach New York at an early date. It is steadily spreading in three directions from Boston, its original point of departure, and when it strikes the State of New York, we, too, will begin to pay dearly for the Trouvelot experiment.
If the author were to learn that the gypsy moth could be efficiently repelled from trees by coating them with a cheap, natural substance, he would likely feel .
dapted from “Introduced Species That Have Become Pests” in Our Vanishing Wild Life, Its Extermination and Protection by William Temple Hornaday (1913)
The man who successfully transplants or "introduces" into a new habitat any persistent species of living thing assumes a very grave responsibility. Every introduced species is doubtful gravel until panned out. The enormous losses that have been inflicted upon the world through the perpetuation of follies with wild vertebrates and insects would, if added together, be enough to purchase a principality. The most aggravating feature of these follies in transplantation is that never yet have they been made severely punishable. We are just as careless and easygoing on this point as we were about the government of the Yellowstone Park in the days when Howell and other poachers destroyed our first national bison herd, and when caught red-handed—as Howell was, skinning seven Park bison cows—could not be punished for it, because there was no penalty prescribed by any law. Today, there is a way in which any revengeful person could inflict enormous damage on the entire South, at no cost to himself, involve those states in enormous losses and the expenditure of vast sums of money, yet go absolutely unpunished!
The gypsy moth is a case in point. This winged calamity was imported at Maiden, Massachusetts, near Boston, by a French entomologist, Mr. Leopold Trouvelot, in 1868 or 69. History records the fact that the man of science did not purposely set free the pest. He was endeavoring with live specimens to find a moth that would produce a cocoon of commercial value to America, and a sudden gust of wind blew out of his study, through an open window, his living and breeding specimens of the gypsy moth. The moth itself is not bad to look at, but its larvae is a great, overgrown brute with an appetite like a hog. Immediately Mr. Trouvelot sought to recover his specimens, and when he failed to find them all, like a man of real honor, he notified the State authorities of the accident. Every effort was made to recover all the specimens, but enough escaped to produce progeny that soon became a scourge to the trees of Massachusetts. The method of the big, nasty-looking mottled-brown caterpillar was very simple. It devoured the entire foliage of every tree that grew in its sphere of influence.
The gypsy moth spread with alarming rapidity and persistence. In course of time, the state authorities of Massachusetts were forced to begin a relentless war upon it, by poisonous sprays and by fire. It was awful! Up to this date (1912) the New England states and the United States Government service have expended in fighting this pest about $7,680,000!
The spread of this pest has been retarded, but the gypsy moth never will be wholly stamped out. Today it exists in Rhode Island, Connecticut, and New Hampshire, and it is due to reach New York at an early date. It is steadily spreading in three directions from Boston, its original point of departure, and when it strikes the State of New York, we, too, will begin to pay dearly for the Trouvelot experiment.
If the author were to learn that the gypsy moth could be efficiently repelled from trees by coating them with a cheap, natural substance, he would likely feel .
Throughout the passage, the author makes it apparent that he feels that the gypsy moth is a very damaging invasive species that causes a lot of problems in the United States. He calls it a “winged calamity” and, in the third paragraph, describes how it spread:
“The gypsy moth spread with alarming rapidity and persistence. In course of time, the state authorities of Massachusetts were forced to begin a relentless war upon it, by poisonous sprays and by fire. It was awful! Up to this date (1912) the New England states and the United States Government service have expended in fighting this pest about $7,680,000!”
From this paragraph, we can tell that if the author were to learn that the gypsy moth could be efficiently stopped from damaging trees, he would be most likely to feel “exuberant,” or excited and happy. Nothing in the passage supports any of the other answers.
Throughout the passage, the author makes it apparent that he feels that the gypsy moth is a very damaging invasive species that causes a lot of problems in the United States. He calls it a “winged calamity” and, in the third paragraph, describes how it spread:
“The gypsy moth spread with alarming rapidity and persistence. In course of time, the state authorities of Massachusetts were forced to begin a relentless war upon it, by poisonous sprays and by fire. It was awful! Up to this date (1912) the New England states and the United States Government service have expended in fighting this pest about $7,680,000!”
From this paragraph, we can tell that if the author were to learn that the gypsy moth could be efficiently stopped from damaging trees, he would be most likely to feel “exuberant,” or excited and happy. Nothing in the passage supports any of the other answers.
Compare your answer with the correct one above
Adapted from “Introduced Species That Have Become Pests” in Our Vanishing Wild Life, Its Extermination and Protection by William Temple Hornaday (1913)
The man who successfully transplants or "introduces" into a new habitat any persistent species of living thing assumes a very grave responsibility. Every introduced species is doubtful gravel until panned out. The enormous losses that have been inflicted upon the world through the perpetuation of follies with wild vertebrates and insects would, if added together, be enough to purchase a principality. The most aggravating feature of these follies in transplantation is that never yet have they been made severely punishable. We are just as careless and easygoing on this point as we were about the government of the Yellowstone Park in the days when Howell and other poachers destroyed our first national bison herd, and when caught red-handed—as Howell was, skinning seven Park bison cows—could not be punished for it, because there was no penalty prescribed by any law. Today, there is a way in which any revengeful person could inflict enormous damage on the entire South, at no cost to himself, involve those states in enormous losses and the expenditure of vast sums of money, yet go absolutely unpunished!
The gypsy moth is a case in point. This winged calamity was imported at Maiden, Massachusetts, near Boston, by a French entomologist, Mr. Leopold Trouvelot, in 1868 or 69. History records the fact that the man of science did not purposely set free the pest. He was endeavoring with live specimens to find a moth that would produce a cocoon of commercial value to America, and a sudden gust of wind blew out of his study, through an open window, his living and breeding specimens of the gypsy moth. The moth itself is not bad to look at, but its larvae is a great, overgrown brute with an appetite like a hog. Immediately Mr. Trouvelot sought to recover his specimens, and when he failed to find them all, like a man of real honor, he notified the State authorities of the accident. Every effort was made to recover all the specimens, but enough escaped to produce progeny that soon became a scourge to the trees of Massachusetts. The method of the big, nasty-looking mottled-brown caterpillar was very simple. It devoured the entire foliage of every tree that grew in its sphere of influence.
The gypsy moth spread with alarming rapidity and persistence. In course of time, the state authorities of Massachusetts were forced to begin a relentless war upon it, by poisonous sprays and by fire. It was awful! Up to this date (1912) the New England states and the United States Government service have expended in fighting this pest about $7,680,000!
The spread of this pest has been retarded, but the gypsy moth never will be wholly stamped out. Today it exists in Rhode Island, Connecticut, and New Hampshire, and it is due to reach New York at an early date. It is steadily spreading in three directions from Boston, its original point of departure, and when it strikes the State of New York, we, too, will begin to pay dearly for the Trouvelot experiment.
Which of the following best paraphrases the underlined sentence, “Every introduced species is doubtful gravel until panned out”?
Adapted from “Introduced Species That Have Become Pests” in Our Vanishing Wild Life, Its Extermination and Protection by William Temple Hornaday (1913)
The man who successfully transplants or "introduces" into a new habitat any persistent species of living thing assumes a very grave responsibility. Every introduced species is doubtful gravel until panned out. The enormous losses that have been inflicted upon the world through the perpetuation of follies with wild vertebrates and insects would, if added together, be enough to purchase a principality. The most aggravating feature of these follies in transplantation is that never yet have they been made severely punishable. We are just as careless and easygoing on this point as we were about the government of the Yellowstone Park in the days when Howell and other poachers destroyed our first national bison herd, and when caught red-handed—as Howell was, skinning seven Park bison cows—could not be punished for it, because there was no penalty prescribed by any law. Today, there is a way in which any revengeful person could inflict enormous damage on the entire South, at no cost to himself, involve those states in enormous losses and the expenditure of vast sums of money, yet go absolutely unpunished!
The gypsy moth is a case in point. This winged calamity was imported at Maiden, Massachusetts, near Boston, by a French entomologist, Mr. Leopold Trouvelot, in 1868 or 69. History records the fact that the man of science did not purposely set free the pest. He was endeavoring with live specimens to find a moth that would produce a cocoon of commercial value to America, and a sudden gust of wind blew out of his study, through an open window, his living and breeding specimens of the gypsy moth. The moth itself is not bad to look at, but its larvae is a great, overgrown brute with an appetite like a hog. Immediately Mr. Trouvelot sought to recover his specimens, and when he failed to find them all, like a man of real honor, he notified the State authorities of the accident. Every effort was made to recover all the specimens, but enough escaped to produce progeny that soon became a scourge to the trees of Massachusetts. The method of the big, nasty-looking mottled-brown caterpillar was very simple. It devoured the entire foliage of every tree that grew in its sphere of influence.
The gypsy moth spread with alarming rapidity and persistence. In course of time, the state authorities of Massachusetts were forced to begin a relentless war upon it, by poisonous sprays and by fire. It was awful! Up to this date (1912) the New England states and the United States Government service have expended in fighting this pest about $7,680,000!
The spread of this pest has been retarded, but the gypsy moth never will be wholly stamped out. Today it exists in Rhode Island, Connecticut, and New Hampshire, and it is due to reach New York at an early date. It is steadily spreading in three directions from Boston, its original point of departure, and when it strikes the State of New York, we, too, will begin to pay dearly for the Trouvelot experiment.
Which of the following best paraphrases the underlined sentence, “Every introduced species is doubtful gravel until panned out”?
Here, the author is using figurative language to describe introduced species. He metaphorically calls them “doubtful gravel until \[they are\] panned out.” Because he’s not speaking literally, this sentence has nothing to do with the ground or gravel itself, so we can eliminate the answer choices “Species that live underground should be carefully examined before being moved into new environments” and “Species that live in gravel are usually harmful when placed in new environments.”
What is the author getting at with his metaphor? Panning rocks and dirt allows miners to separate out valuable minerals from other matter. Think of miners “panning for gold”—it’s the same principle, except here, the author is speaking of it as applying to gravel. By calling the gravel “doubtful,” the author is expressing that you don’t know what you’re going to get with it before you “pan it out” and see if there is anything valuable in it. Applying this thinking to invasive species, the author is therefore saying that “one can’t tell whether an introduced species will be helpful or harmful until it is actually introduced.”
If you didn’t know what panning gravel was, you could still solve this question by narrowing down your answer choices. For instance, nowhere in the passage are the beneficial effects of introduced species discussed, though the author discusses this in a previous chapter of his book. Because they’re not mentioned in the passage, we can discard the answer choice “An invasive species can cause beneficial effects to its new environment as well as harmful ones.” This is definitely not what the indicated sentence is saying; if we replaced the sentence with this answer choice, the logic of the paragraph wouldn’t make any sense.
As for the remaining answer choice, “One should never move a species from its natural environment into a new environment for fear of the consequences,” it cannot be correct because in the sentence before the one on which this question focuses, the author writes, “The man who successfully transplants or ‘introduces' into a new habitat any persistent species of living thing assumes a very grave responsibility.” Note that he doesn’t say that this should never be done; he just implies that it could go very badly. It wouldn’t make much sense if in the next sentence, the author said this should never be done. It seems more logical that he would have led with that statement, it being the stronger of the two.
Here, the author is using figurative language to describe introduced species. He metaphorically calls them “doubtful gravel until \[they are\] panned out.” Because he’s not speaking literally, this sentence has nothing to do with the ground or gravel itself, so we can eliminate the answer choices “Species that live underground should be carefully examined before being moved into new environments” and “Species that live in gravel are usually harmful when placed in new environments.”
What is the author getting at with his metaphor? Panning rocks and dirt allows miners to separate out valuable minerals from other matter. Think of miners “panning for gold”—it’s the same principle, except here, the author is speaking of it as applying to gravel. By calling the gravel “doubtful,” the author is expressing that you don’t know what you’re going to get with it before you “pan it out” and see if there is anything valuable in it. Applying this thinking to invasive species, the author is therefore saying that “one can’t tell whether an introduced species will be helpful or harmful until it is actually introduced.”
If you didn’t know what panning gravel was, you could still solve this question by narrowing down your answer choices. For instance, nowhere in the passage are the beneficial effects of introduced species discussed, though the author discusses this in a previous chapter of his book. Because they’re not mentioned in the passage, we can discard the answer choice “An invasive species can cause beneficial effects to its new environment as well as harmful ones.” This is definitely not what the indicated sentence is saying; if we replaced the sentence with this answer choice, the logic of the paragraph wouldn’t make any sense.
As for the remaining answer choice, “One should never move a species from its natural environment into a new environment for fear of the consequences,” it cannot be correct because in the sentence before the one on which this question focuses, the author writes, “The man who successfully transplants or ‘introduces' into a new habitat any persistent species of living thing assumes a very grave responsibility.” Note that he doesn’t say that this should never be done; he just implies that it could go very badly. It wouldn’t make much sense if in the next sentence, the author said this should never be done. It seems more logical that he would have led with that statement, it being the stronger of the two.
Compare your answer with the correct one above
Adapted from "The Greatest Sea-Wave Ever Known" by R. A. Proctor in Wonders of Earth, Sea, and Sky (1902, ed. Edward Singleton Holden)
Far on beyond the shores of New Zealand the great wave coursed, reaching at length the coast of Australia. At dawn of August 14th Moreton Bay was visited by five well-marked waves. At Newcastle, on the Hunter River, the sea rose and fell several times in a remarkable manner, the oscillatory motion commencing at half-past six in the morning. But the most significant evidence of the extent to which the sea-wave traveled in this direction was afforded at Port Fairy, Belfast, South Victoria. Here the oscillation of the water was distinctly perceived at midday on August 14th; and yet, to reach this point, the sea-wave must not only have traveled on a circuitous course nearly equal in length to half the circumference of the earth, but must have passed through Bass's Straits, between Australia and Van Diemen's Land, and so have lost a considerable portion of its force and dimensions. When we remember that had not the effects of the earth-shock on the water been limited by the shores of South America, a wave of disturbance equal in extent to that which traveled westward would have swept toward the east, we see that the force of the shock was sufficient to have disturbed the waters of an ocean covering the whole surface of the earth. For the sea-waves which reached Yokohama in one direction and Port Fairy in another had each traversed a distance nearly equal to half the earth's circumference; so that if the surface of the earth were all sea, waves setting out in opposite directions from the center of disturbance would have met each other at the antipodes of their starting-point.
It is impossible to contemplate the effects which followed the great earthquake—the passage of a sea-wave of enormous volume over fully one third of the earth's surface, and the force with which, on the farthermost limits of its range, the wave rolled in upon shores more than ten thousand miles from its starting-place—without feeling that those geologists are right who deny that the subterranean forces of the earth are diminishing in intensity. It may be difficult, perhaps, to look on the effects which are ascribed to ancient earth-throes without imagining for a while that the power of modern earthquakes is altogether less. But when we consider fairly the share which time had in those ancient processes of change, when we see that while mountain ranges were being upheaved or valleys depressed to their present position, species after species, and type after type appeared on the earth, and lived out the long lives which belong to species and to types, we are recalled to the remembrance of the great work which the earth's subterranean forces are still engaged upon. Even now continents are being slowly depressed or upheaved; even now mountain ranges are being raised to a new level, tablelands are in process of formation, and great valleys are being gradually scooped out. It may need an occasional outburst, such as the earthquake of August, 1868, to remind us that great forces are at work beneath the earth's surface. But, in reality, the signs of change have long been noted. Old shorelines shift their place, old soundings vary; the sea advances in one place and retires in another; on every side Nature's plastic hand is at work modeling and remodeling the earth, in order that it may always be a fit abode for those who are to dwell upon it.
Which of these sentences best restates the author’s meaning in the underlined portion of text?
Adapted from "The Greatest Sea-Wave Ever Known" by R. A. Proctor in Wonders of Earth, Sea, and Sky (1902, ed. Edward Singleton Holden)
Far on beyond the shores of New Zealand the great wave coursed, reaching at length the coast of Australia. At dawn of August 14th Moreton Bay was visited by five well-marked waves. At Newcastle, on the Hunter River, the sea rose and fell several times in a remarkable manner, the oscillatory motion commencing at half-past six in the morning. But the most significant evidence of the extent to which the sea-wave traveled in this direction was afforded at Port Fairy, Belfast, South Victoria. Here the oscillation of the water was distinctly perceived at midday on August 14th; and yet, to reach this point, the sea-wave must not only have traveled on a circuitous course nearly equal in length to half the circumference of the earth, but must have passed through Bass's Straits, between Australia and Van Diemen's Land, and so have lost a considerable portion of its force and dimensions. When we remember that had not the effects of the earth-shock on the water been limited by the shores of South America, a wave of disturbance equal in extent to that which traveled westward would have swept toward the east, we see that the force of the shock was sufficient to have disturbed the waters of an ocean covering the whole surface of the earth. For the sea-waves which reached Yokohama in one direction and Port Fairy in another had each traversed a distance nearly equal to half the earth's circumference; so that if the surface of the earth were all sea, waves setting out in opposite directions from the center of disturbance would have met each other at the antipodes of their starting-point.
It is impossible to contemplate the effects which followed the great earthquake—the passage of a sea-wave of enormous volume over fully one third of the earth's surface, and the force with which, on the farthermost limits of its range, the wave rolled in upon shores more than ten thousand miles from its starting-place—without feeling that those geologists are right who deny that the subterranean forces of the earth are diminishing in intensity. It may be difficult, perhaps, to look on the effects which are ascribed to ancient earth-throes without imagining for a while that the power of modern earthquakes is altogether less. But when we consider fairly the share which time had in those ancient processes of change, when we see that while mountain ranges were being upheaved or valleys depressed to their present position, species after species, and type after type appeared on the earth, and lived out the long lives which belong to species and to types, we are recalled to the remembrance of the great work which the earth's subterranean forces are still engaged upon. Even now continents are being slowly depressed or upheaved; even now mountain ranges are being raised to a new level, tablelands are in process of formation, and great valleys are being gradually scooped out. It may need an occasional outburst, such as the earthquake of August, 1868, to remind us that great forces are at work beneath the earth's surface. But, in reality, the signs of change have long been noted. Old shorelines shift their place, old soundings vary; the sea advances in one place and retires in another; on every side Nature's plastic hand is at work modeling and remodeling the earth, in order that it may always be a fit abode for those who are to dwell upon it.
Which of these sentences best restates the author’s meaning in the underlined portion of text?
Answering this question is much simpler if you understand that “center of disturbance” is another way of saying “epicenter.” (Both terms meaning the center point where the earthquake occurred.) Similarly, it helps to understand that “antipode” means polar opposite. The author is talking about how, because of the impact of land, the waves traveling in opposite directions do not actually meet each other, but “if the earth were devoid of (without) land, waves traveling in opposite directions from the epicenter would meet each other at the exact opposite side of the Earth.”
Answering this question is much simpler if you understand that “center of disturbance” is another way of saying “epicenter.” (Both terms meaning the center point where the earthquake occurred.) Similarly, it helps to understand that “antipode” means polar opposite. The author is talking about how, because of the impact of land, the waves traveling in opposite directions do not actually meet each other, but “if the earth were devoid of (without) land, waves traveling in opposite directions from the epicenter would meet each other at the exact opposite side of the Earth.”
Compare your answer with the correct one above
Adapted from The Principles of Breeding by S. L. Goodale (1861)
The Jersey cow, formerly known as the Alderney, is almost exclusively employed for dairy purposes, and may not be expected to give satisfaction for other uses. Their milk is richer than that of any other cows, and the butter made from it possesses a superior flavor and a deep rich color, and consequently commands an extraordinary price in all markets where good butter is appreciated.
Jersey cattle are of Norman origin, and are noted for their milking properties. The cows are generally very docile and gentle, but the males when past two or three years of age often become vicious and unmanageable. It is said that the cows fatten readily when dry.
There is no branch of cattle husbandry which promises better returns than the breeding and rearing of milch cows. In the vicinity of large towns and cities are many cows which having been culled from many miles around, on account of dairy properties, are considerably above the average, but taking the cows of the country together they do not compare favorably with the oxen. Farmers generally take more pride in their oxen, and strive to have as good or better than any of their neighbors, while if a cow will give milk enough to rear a large steer calf and a little besides, it is often deemed satisfactory.
“Milch cows” are most probably .
Adapted from The Principles of Breeding by S. L. Goodale (1861)
The Jersey cow, formerly known as the Alderney, is almost exclusively employed for dairy purposes, and may not be expected to give satisfaction for other uses. Their milk is richer than that of any other cows, and the butter made from it possesses a superior flavor and a deep rich color, and consequently commands an extraordinary price in all markets where good butter is appreciated.
Jersey cattle are of Norman origin, and are noted for their milking properties. The cows are generally very docile and gentle, but the males when past two or three years of age often become vicious and unmanageable. It is said that the cows fatten readily when dry.
There is no branch of cattle husbandry which promises better returns than the breeding and rearing of milch cows. In the vicinity of large towns and cities are many cows which having been culled from many miles around, on account of dairy properties, are considerably above the average, but taking the cows of the country together they do not compare favorably with the oxen. Farmers generally take more pride in their oxen, and strive to have as good or better than any of their neighbors, while if a cow will give milk enough to rear a large steer calf and a little besides, it is often deemed satisfactory.
“Milch cows” are most probably .
A “milch cow” is a cow that produces milk for the farmer, but it is highly likely you have never encountered this term before. You must therefore read in context. The author makes the statement “There is no branch of cattle husbandry which promises better returns than the breeding and rearing of milch cows” immediately after he spends two paragraphs talking about the immensely productive dairy-producing qualities of Jersey cows, so you may infer that a “milch cow” is a dairy cow, or a cow raised for its milk.
A “milch cow” is a cow that produces milk for the farmer, but it is highly likely you have never encountered this term before. You must therefore read in context. The author makes the statement “There is no branch of cattle husbandry which promises better returns than the breeding and rearing of milch cows” immediately after he spends two paragraphs talking about the immensely productive dairy-producing qualities of Jersey cows, so you may infer that a “milch cow” is a dairy cow, or a cow raised for its milk.
Compare your answer with the correct one above
Adapted from "The Greatest Sea-Wave Ever Known" by R. A. Proctor in Wonders of Earth, Sea, and Sky (1902, ed. Edward Singleton Holden)
Far on beyond the shores of New Zealand the great wave coursed, reaching at length the coast of Australia. At dawn of August 14th Moreton Bay was visited by five well-marked waves. At Newcastle, on the Hunter River, the sea rose and fell several times in a remarkable manner, the oscillatory motion commencing at half-past six in the morning. But the most significant evidence of the extent to which the sea-wave traveled in this direction was afforded at Port Fairy, Belfast, South Victoria. Here the oscillation of the water was distinctly perceived at midday on August 14th; and yet, to reach this point, the sea-wave must not only have traveled on a circuitous course nearly equal in length to half the circumference of the earth, but must have passed through Bass's Straits, between Australia and Van Diemen's Land, and so have lost a considerable portion of its force and dimensions. When we remember that had not the effects of the earth-shock on the water been limited by the shores of South America, a wave of disturbance equal in extent to that which traveled westward would have swept toward the east, we see that the force of the shock was sufficient to have disturbed the waters of an ocean covering the whole surface of the earth. For the sea-waves which reached Yokohama in one direction and Port Fairy in another had each traversed a distance nearly equal to half the earth's circumference; so that if the surface of the earth were all sea, waves setting out in opposite directions from the center of disturbance would have met each other at the antipodes of their starting-point.
It is impossible to contemplate the effects which followed the great earthquake—the passage of a sea-wave of enormous volume over fully one third of the earth's surface, and the force with which, on the farthermost limits of its range, the wave rolled in upon shores more than ten thousand miles from its starting-place—without feeling that those geologists are right who deny that the subterranean forces of the earth are diminishing in intensity. It may be difficult, perhaps, to look on the effects which are ascribed to ancient earth-throes without imagining for a while that the power of modern earthquakes is altogether less. But when we consider fairly the share which time had in those ancient processes of change, when we see that while mountain ranges were being upheaved or valleys depressed to their present position, species after species, and type after type appeared on the earth, and lived out the long lives which belong to species and to types, we are recalled to the remembrance of the great work which the earth's subterranean forces are still engaged upon. Even now continents are being slowly depressed or upheaved; even now mountain ranges are being raised to a new level, tablelands are in process of formation, and great valleys are being gradually scooped out. It may need an occasional outburst, such as the earthquake of August, 1868, to remind us that great forces are at work beneath the earth's surface. But, in reality, the signs of change have long been noted. Old shorelines shift their place, old soundings vary; the sea advances in one place and retires in another; on every side Nature's plastic hand is at work modeling and remodeling the earth, in order that it may always be a fit abode for those who are to dwell upon it.
The example of the extent to which the sea-wave traveled is primarily used to prove .
Adapted from "The Greatest Sea-Wave Ever Known" by R. A. Proctor in Wonders of Earth, Sea, and Sky (1902, ed. Edward Singleton Holden)
Far on beyond the shores of New Zealand the great wave coursed, reaching at length the coast of Australia. At dawn of August 14th Moreton Bay was visited by five well-marked waves. At Newcastle, on the Hunter River, the sea rose and fell several times in a remarkable manner, the oscillatory motion commencing at half-past six in the morning. But the most significant evidence of the extent to which the sea-wave traveled in this direction was afforded at Port Fairy, Belfast, South Victoria. Here the oscillation of the water was distinctly perceived at midday on August 14th; and yet, to reach this point, the sea-wave must not only have traveled on a circuitous course nearly equal in length to half the circumference of the earth, but must have passed through Bass's Straits, between Australia and Van Diemen's Land, and so have lost a considerable portion of its force and dimensions. When we remember that had not the effects of the earth-shock on the water been limited by the shores of South America, a wave of disturbance equal in extent to that which traveled westward would have swept toward the east, we see that the force of the shock was sufficient to have disturbed the waters of an ocean covering the whole surface of the earth. For the sea-waves which reached Yokohama in one direction and Port Fairy in another had each traversed a distance nearly equal to half the earth's circumference; so that if the surface of the earth were all sea, waves setting out in opposite directions from the center of disturbance would have met each other at the antipodes of their starting-point.
It is impossible to contemplate the effects which followed the great earthquake—the passage of a sea-wave of enormous volume over fully one third of the earth's surface, and the force with which, on the farthermost limits of its range, the wave rolled in upon shores more than ten thousand miles from its starting-place—without feeling that those geologists are right who deny that the subterranean forces of the earth are diminishing in intensity. It may be difficult, perhaps, to look on the effects which are ascribed to ancient earth-throes without imagining for a while that the power of modern earthquakes is altogether less. But when we consider fairly the share which time had in those ancient processes of change, when we see that while mountain ranges were being upheaved or valleys depressed to their present position, species after species, and type after type appeared on the earth, and lived out the long lives which belong to species and to types, we are recalled to the remembrance of the great work which the earth's subterranean forces are still engaged upon. Even now continents are being slowly depressed or upheaved; even now mountain ranges are being raised to a new level, tablelands are in process of formation, and great valleys are being gradually scooped out. It may need an occasional outburst, such as the earthquake of August, 1868, to remind us that great forces are at work beneath the earth's surface. But, in reality, the signs of change have long been noted. Old shorelines shift their place, old soundings vary; the sea advances in one place and retires in another; on every side Nature's plastic hand is at work modeling and remodeling the earth, in order that it may always be a fit abode for those who are to dwell upon it.
The example of the extent to which the sea-wave traveled is primarily used to prove .
The author employs the example of the extent to which the sea-wave traveled to prove that the internal forces of the Earth are as powerful as they have been throughout the history of the Earth. This is the primary argument of the passage, and, in particular, the second paragraph. The author offers this conclusion to us most readily when he says "those geologists are right who deny that the subterranean forces of the earth are diminishing in intensity.”
The author employs the example of the extent to which the sea-wave traveled to prove that the internal forces of the Earth are as powerful as they have been throughout the history of the Earth. This is the primary argument of the passage, and, in particular, the second paragraph. The author offers this conclusion to us most readily when he says "those geologists are right who deny that the subterranean forces of the earth are diminishing in intensity.”
Compare your answer with the correct one above
Adapted from “Introduced Species That Have Become Pests” in Our Vanishing Wild Life, Its Extermination and Protection by William Temple Hornaday (1913)
The man who successfully transplants or "introduces" into a new habitat any persistent species of living thing assumes a very grave responsibility. Every introduced species is doubtful gravel until panned out. The enormous losses that have been inflicted upon the world through the perpetuation of follies with wild vertebrates and insects would, if added together, be enough to purchase a principality. The most aggravating feature of these follies in transplantation is that never yet have they been made severely punishable. We are just as careless and easygoing on this point as we were about the government of the Yellowstone Park in the days when Howell and other poachers destroyed our first national bison herd, and when caught red-handed—as Howell was, skinning seven Park bison cows—could not be punished for it, because there was no penalty prescribed by any law. Today, there is a way in which any revengeful person could inflict enormous damage on the entire South, at no cost to himself, involve those states in enormous losses and the expenditure of vast sums of money, yet go absolutely unpunished!
The gypsy moth is a case in point. This winged calamity was imported at Maiden, Massachusetts, near Boston, by a French entomologist, Mr. Leopold Trouvelot, in 1868 or 69. History records the fact that the man of science did not purposely set free the pest. He was endeavoring with live specimens to find a moth that would produce a cocoon of commercial value to America, and a sudden gust of wind blew out of his study, through an open window, his living and breeding specimens of the gypsy moth. The moth itself is not bad to look at, but its larvae is a great, overgrown brute with an appetite like a hog. Immediately Mr. Trouvelot sought to recover his specimens, and when he failed to find them all, like a man of real honor, he notified the State authorities of the accident. Every effort was made to recover all the specimens, but enough escaped to produce progeny that soon became a scourge to the trees of Massachusetts. The method of the big, nasty-looking mottled-brown caterpillar was very simple. It devoured the entire foliage of every tree that grew in its sphere of influence.
The gypsy moth spread with alarming rapidity and persistence. In course of time, the state authorities of Massachusetts were forced to begin a relentless war upon it, by poisonous sprays and by fire. It was awful! Up to this date (1912) the New England states and the United States Government service have expended in fighting this pest about $7,680,000!
The spread of this pest has been retarded, but the gypsy moth never will be wholly stamped out. Today it exists in Rhode Island, Connecticut, and New Hampshire, and it is due to reach New York at an early date. It is steadily spreading in three directions from Boston, its original point of departure, and when it strikes the State of New York, we, too, will begin to pay dearly for the Trouvelot experiment.
Which of the following best describes an opinion held by the author?
Adapted from “Introduced Species That Have Become Pests” in Our Vanishing Wild Life, Its Extermination and Protection by William Temple Hornaday (1913)
The man who successfully transplants or "introduces" into a new habitat any persistent species of living thing assumes a very grave responsibility. Every introduced species is doubtful gravel until panned out. The enormous losses that have been inflicted upon the world through the perpetuation of follies with wild vertebrates and insects would, if added together, be enough to purchase a principality. The most aggravating feature of these follies in transplantation is that never yet have they been made severely punishable. We are just as careless and easygoing on this point as we were about the government of the Yellowstone Park in the days when Howell and other poachers destroyed our first national bison herd, and when caught red-handed—as Howell was, skinning seven Park bison cows—could not be punished for it, because there was no penalty prescribed by any law. Today, there is a way in which any revengeful person could inflict enormous damage on the entire South, at no cost to himself, involve those states in enormous losses and the expenditure of vast sums of money, yet go absolutely unpunished!
The gypsy moth is a case in point. This winged calamity was imported at Maiden, Massachusetts, near Boston, by a French entomologist, Mr. Leopold Trouvelot, in 1868 or 69. History records the fact that the man of science did not purposely set free the pest. He was endeavoring with live specimens to find a moth that would produce a cocoon of commercial value to America, and a sudden gust of wind blew out of his study, through an open window, his living and breeding specimens of the gypsy moth. The moth itself is not bad to look at, but its larvae is a great, overgrown brute with an appetite like a hog. Immediately Mr. Trouvelot sought to recover his specimens, and when he failed to find them all, like a man of real honor, he notified the State authorities of the accident. Every effort was made to recover all the specimens, but enough escaped to produce progeny that soon became a scourge to the trees of Massachusetts. The method of the big, nasty-looking mottled-brown caterpillar was very simple. It devoured the entire foliage of every tree that grew in its sphere of influence.
The gypsy moth spread with alarming rapidity and persistence. In course of time, the state authorities of Massachusetts were forced to begin a relentless war upon it, by poisonous sprays and by fire. It was awful! Up to this date (1912) the New England states and the United States Government service have expended in fighting this pest about $7,680,000!
The spread of this pest has been retarded, but the gypsy moth never will be wholly stamped out. Today it exists in Rhode Island, Connecticut, and New Hampshire, and it is due to reach New York at an early date. It is steadily spreading in three directions from Boston, its original point of departure, and when it strikes the State of New York, we, too, will begin to pay dearly for the Trouvelot experiment.
Which of the following best describes an opinion held by the author?
The first sentence of the passage’s last paragraph provides the information we need to answer this question correctly: the author writes, “The spread of this pest has been retarded, but the gypsy moth never will be wholly stamped out.” We can thus definitively say that he thinks that “despite spending a great deal of money, the United States will never be rid of the gypsy moth.”
The first sentence of the passage’s last paragraph provides the information we need to answer this question correctly: the author writes, “The spread of this pest has been retarded, but the gypsy moth never will be wholly stamped out.” We can thus definitively say that he thinks that “despite spending a great deal of money, the United States will never be rid of the gypsy moth.”
Compare your answer with the correct one above
Adapted from "The Colors of Animals" by Sir John Lubbock in A Book of Natural History (1902, ed. David Starr Jordan)
The color of animals is by no means a matter of chance; it depends on many considerations, but in the majority of cases tends to protect the animal from danger by rendering it less conspicuous. Perhaps it may be said that if coloring is mainly protective, there ought to be but few brightly colored animals. There are, however, not a few cases in which vivid colors are themselves protective. The kingfisher itself, though so brightly colored, is by no means easy to see. The blue harmonizes with the water, and the bird as it darts along the stream looks almost like a flash of sunlight.
Desert animals are generally the color of the desert. Thus, for instance, the lion, the antelope, and the wild donkey are all sand-colored. “Indeed,” says Canon Tristram, “in the desert, where neither trees, brushwood, nor even undulation of the surface afford the slightest protection to its foes, a modification of color assimilated to that of the surrounding country is absolutely necessary. Hence, without exception, the upper plumage of every bird, and also the fur of all the smaller mammals and the skin of all the snakes and lizards, is of one uniform sand color.”
The next point is the color of the mature caterpillars, some of which are brown. This probably makes the caterpillar even more conspicuous among the green leaves than would otherwise be the case. Let us see, then, whether the habits of the insect will throw any light upon the riddle. What would you do if you were a big caterpillar? Why, like most other defenseless creatures, you would feed by night, and lie concealed by day. So do these caterpillars. When the morning light comes, they creep down the stem of the food plant, and lie concealed among the thick herbage and dry sticks and leaves, near the ground, and it is obvious that under such circumstances the brown color really becomes a protection. It might indeed be argued that the caterpillars, having become brown, concealed themselves on the ground, and that we were reversing the state of things. But this is not so, because, while we may say as a general rule that large caterpillars feed by night and lie concealed by day, it is by no means always the case that they are brown; some of them still retaining the green color. We may then conclude that the habit of concealing themselves by day came first, and that the brown color is a later adaptation.
Why is it considered especially vital for desert animals to match the color of the desert?
Adapted from "The Colors of Animals" by Sir John Lubbock in A Book of Natural History (1902, ed. David Starr Jordan)
The color of animals is by no means a matter of chance; it depends on many considerations, but in the majority of cases tends to protect the animal from danger by rendering it less conspicuous. Perhaps it may be said that if coloring is mainly protective, there ought to be but few brightly colored animals. There are, however, not a few cases in which vivid colors are themselves protective. The kingfisher itself, though so brightly colored, is by no means easy to see. The blue harmonizes with the water, and the bird as it darts along the stream looks almost like a flash of sunlight.
Desert animals are generally the color of the desert. Thus, for instance, the lion, the antelope, and the wild donkey are all sand-colored. “Indeed,” says Canon Tristram, “in the desert, where neither trees, brushwood, nor even undulation of the surface afford the slightest protection to its foes, a modification of color assimilated to that of the surrounding country is absolutely necessary. Hence, without exception, the upper plumage of every bird, and also the fur of all the smaller mammals and the skin of all the snakes and lizards, is of one uniform sand color.”
The next point is the color of the mature caterpillars, some of which are brown. This probably makes the caterpillar even more conspicuous among the green leaves than would otherwise be the case. Let us see, then, whether the habits of the insect will throw any light upon the riddle. What would you do if you were a big caterpillar? Why, like most other defenseless creatures, you would feed by night, and lie concealed by day. So do these caterpillars. When the morning light comes, they creep down the stem of the food plant, and lie concealed among the thick herbage and dry sticks and leaves, near the ground, and it is obvious that under such circumstances the brown color really becomes a protection. It might indeed be argued that the caterpillars, having become brown, concealed themselves on the ground, and that we were reversing the state of things. But this is not so, because, while we may say as a general rule that large caterpillars feed by night and lie concealed by day, it is by no means always the case that they are brown; some of them still retaining the green color. We may then conclude that the habit of concealing themselves by day came first, and that the brown color is a later adaptation.
Why is it considered especially vital for desert animals to match the color of the desert?
Answering this question requires you to pay attention to details and be able to interpret a small portion of text. In the relevant section, the author says, "in the desert, where neither trees, brushwood, nor even undulation of the surface afford the slightest protection to its foes, a modification of color assimilated to that of the surrounding country is absolutely necessary.” So, in the desert, there are no trees or changes in the surface of the earth to provide cover and protection (“inherent desolation”); therefore, it is especially vital for desert animals to mimic the color of their environment to ensure they can remain hidden.
Answering this question requires you to pay attention to details and be able to interpret a small portion of text. In the relevant section, the author says, "in the desert, where neither trees, brushwood, nor even undulation of the surface afford the slightest protection to its foes, a modification of color assimilated to that of the surrounding country is absolutely necessary.” So, in the desert, there are no trees or changes in the surface of the earth to provide cover and protection (“inherent desolation”); therefore, it is especially vital for desert animals to mimic the color of their environment to ensure they can remain hidden.
Compare your answer with the correct one above
Adapted from "The Colors of Animals" by Sir John Lubbock in A Book of Natural History (1902, ed. David Starr Jordan)
The color of animals is by no means a matter of chance; it depends on many considerations, but in the majority of cases tends to protect the animal from danger by rendering it less conspicuous. Perhaps it may be said that if coloring is mainly protective, there ought to be but few brightly colored animals. There are, however, not a few cases in which vivid colors are themselves protective. The kingfisher itself, though so brightly colored, is by no means easy to see. The blue harmonizes with the water, and the bird as it darts along the stream looks almost like a flash of sunlight.
Desert animals are generally the color of the desert. Thus, for instance, the lion, the antelope, and the wild donkey are all sand-colored. “Indeed,” says Canon Tristram, “in the desert, where neither trees, brushwood, nor even undulation of the surface afford the slightest protection to its foes, a modification of color assimilated to that of the surrounding country is absolutely necessary. Hence, without exception, the upper plumage of every bird, and also the fur of all the smaller mammals and the skin of all the snakes and lizards, is of one uniform sand color.”
The next point is the color of the mature caterpillars, some of which are brown. This probably makes the caterpillar even more conspicuous among the green leaves than would otherwise be the case. Let us see, then, whether the habits of the insect will throw any light upon the riddle. What would you do if you were a big caterpillar? Why, like most other defenseless creatures, you would feed by night, and lie concealed by day. So do these caterpillars. When the morning light comes, they creep down the stem of the food plant, and lie concealed among the thick herbage and dry sticks and leaves, near the ground, and it is obvious that under such circumstances the brown color really becomes a protection. It might indeed be argued that the caterpillars, having become brown, concealed themselves on the ground, and that we were reversing the state of things. But this is not so, because, while we may say as a general rule that large caterpillars feed by night and lie concealed by day, it is by no means always the case that they are brown; some of them still retaining the green color. We may then conclude that the habit of concealing themselves by day came first, and that the brown color is a later adaptation.
The example of the mature caterpillar in the third paragraph is primarily intended to show .
Adapted from "The Colors of Animals" by Sir John Lubbock in A Book of Natural History (1902, ed. David Starr Jordan)
The color of animals is by no means a matter of chance; it depends on many considerations, but in the majority of cases tends to protect the animal from danger by rendering it less conspicuous. Perhaps it may be said that if coloring is mainly protective, there ought to be but few brightly colored animals. There are, however, not a few cases in which vivid colors are themselves protective. The kingfisher itself, though so brightly colored, is by no means easy to see. The blue harmonizes with the water, and the bird as it darts along the stream looks almost like a flash of sunlight.
Desert animals are generally the color of the desert. Thus, for instance, the lion, the antelope, and the wild donkey are all sand-colored. “Indeed,” says Canon Tristram, “in the desert, where neither trees, brushwood, nor even undulation of the surface afford the slightest protection to its foes, a modification of color assimilated to that of the surrounding country is absolutely necessary. Hence, without exception, the upper plumage of every bird, and also the fur of all the smaller mammals and the skin of all the snakes and lizards, is of one uniform sand color.”
The next point is the color of the mature caterpillars, some of which are brown. This probably makes the caterpillar even more conspicuous among the green leaves than would otherwise be the case. Let us see, then, whether the habits of the insect will throw any light upon the riddle. What would you do if you were a big caterpillar? Why, like most other defenseless creatures, you would feed by night, and lie concealed by day. So do these caterpillars. When the morning light comes, they creep down the stem of the food plant, and lie concealed among the thick herbage and dry sticks and leaves, near the ground, and it is obvious that under such circumstances the brown color really becomes a protection. It might indeed be argued that the caterpillars, having become brown, concealed themselves on the ground, and that we were reversing the state of things. But this is not so, because, while we may say as a general rule that large caterpillars feed by night and lie concealed by day, it is by no means always the case that they are brown; some of them still retaining the green color. We may then conclude that the habit of concealing themselves by day came first, and that the brown color is a later adaptation.
The example of the mature caterpillar in the third paragraph is primarily intended to show .
In the third paragraph, the author talks at length about the development of a brown coloring among certain mature caterpillars which aids their survival in the daytime, when they hide among the sticks and twigs below their foods sources. It is clear that the author is arguing that the caterpillar’s coloring (“genetic adaptation”) follows and aids its habit of eating by night and hiding during the day (“behavioral patterns”) from the excerpt that reads, “We may then conclude that the habit of concealing themselves by day came first, and that the brown color is a later adaptation.”
In the third paragraph, the author talks at length about the development of a brown coloring among certain mature caterpillars which aids their survival in the daytime, when they hide among the sticks and twigs below their foods sources. It is clear that the author is arguing that the caterpillar’s coloring (“genetic adaptation”) follows and aids its habit of eating by night and hiding during the day (“behavioral patterns”) from the excerpt that reads, “We may then conclude that the habit of concealing themselves by day came first, and that the brown color is a later adaptation.”
Compare your answer with the correct one above
Adapted from "The Colors of Animals" by Sir John Lubbock in A Book of Natural History (1902, ed. David Starr Jordan)
The color of animals is by no means a matter of chance; it depends on many considerations, but in the majority of cases tends to protect the animal from danger by rendering it less conspicuous. Perhaps it may be said that if coloring is mainly protective, there ought to be but few brightly colored animals. There are, however, not a few cases in which vivid colors are themselves protective. The kingfisher itself, though so brightly colored, is by no means easy to see. The blue harmonizes with the water, and the bird as it darts along the stream looks almost like a flash of sunlight.
Desert animals are generally the color of the desert. Thus, for instance, the lion, the antelope, and the wild donkey are all sand-colored. “Indeed,” says Canon Tristram, “in the desert, where neither trees, brushwood, nor even undulation of the surface afford the slightest protection to its foes, a modification of color assimilated to that of the surrounding country is absolutely necessary. Hence, without exception, the upper plumage of every bird, and also the fur of all the smaller mammals and the skin of all the snakes and lizards, is of one uniform sand color.”
The next point is the color of the mature caterpillars, some of which are brown. This probably makes the caterpillar even more conspicuous among the green leaves than would otherwise be the case. Let us see, then, whether the habits of the insect will throw any light upon the riddle. What would you do if you were a big caterpillar? Why, like most other defenseless creatures, you would feed by night, and lie concealed by day. So do these caterpillars. When the morning light comes, they creep down the stem of the food plant, and lie concealed among the thick herbage and dry sticks and leaves, near the ground, and it is obvious that under such circumstances the brown color really becomes a protection. It might indeed be argued that the caterpillars, having become brown, concealed themselves on the ground, and that we were reversing the state of things. But this is not so, because, while we may say as a general rule that large caterpillars feed by night and lie concealed by day, it is by no means always the case that they are brown; some of them still retaining the green color. We may then conclude that the habit of concealing themselves by day came first, and that the brown color is a later adaptation.
The example of the kingfisher in the first paragraph is intended to prove .
Adapted from "The Colors of Animals" by Sir John Lubbock in A Book of Natural History (1902, ed. David Starr Jordan)
The color of animals is by no means a matter of chance; it depends on many considerations, but in the majority of cases tends to protect the animal from danger by rendering it less conspicuous. Perhaps it may be said that if coloring is mainly protective, there ought to be but few brightly colored animals. There are, however, not a few cases in which vivid colors are themselves protective. The kingfisher itself, though so brightly colored, is by no means easy to see. The blue harmonizes with the water, and the bird as it darts along the stream looks almost like a flash of sunlight.
Desert animals are generally the color of the desert. Thus, for instance, the lion, the antelope, and the wild donkey are all sand-colored. “Indeed,” says Canon Tristram, “in the desert, where neither trees, brushwood, nor even undulation of the surface afford the slightest protection to its foes, a modification of color assimilated to that of the surrounding country is absolutely necessary. Hence, without exception, the upper plumage of every bird, and also the fur of all the smaller mammals and the skin of all the snakes and lizards, is of one uniform sand color.”
The next point is the color of the mature caterpillars, some of which are brown. This probably makes the caterpillar even more conspicuous among the green leaves than would otherwise be the case. Let us see, then, whether the habits of the insect will throw any light upon the riddle. What would you do if you were a big caterpillar? Why, like most other defenseless creatures, you would feed by night, and lie concealed by day. So do these caterpillars. When the morning light comes, they creep down the stem of the food plant, and lie concealed among the thick herbage and dry sticks and leaves, near the ground, and it is obvious that under such circumstances the brown color really becomes a protection. It might indeed be argued that the caterpillars, having become brown, concealed themselves on the ground, and that we were reversing the state of things. But this is not so, because, while we may say as a general rule that large caterpillars feed by night and lie concealed by day, it is by no means always the case that they are brown; some of them still retaining the green color. We may then conclude that the habit of concealing themselves by day came first, and that the brown color is a later adaptation.
The example of the kingfisher in the first paragraph is intended to prove .
Answering this question requires you to read the first paragraph carefully and to understand the argument that the author is making. The author says, “Perhaps it may be said that if coloring is mainly protective, there ought to be but few brightly colored animals. There are, however, not a few cases in which vivid colors are themselves protective.” So, while the colors of different animals generally match their environment, sometimes there are cases in which vivid colors offer better protection, as in the case of the kingfisher. There is no one rule about how an animal’s coloring might be adapted. As the author says, “The blue harmonizes with the water, and the bird as it darts along the stream looks almost like a flash of sunlight.” So, the kingfisher is better protected by vibrant colors.
Answering this question requires you to read the first paragraph carefully and to understand the argument that the author is making. The author says, “Perhaps it may be said that if coloring is mainly protective, there ought to be but few brightly colored animals. There are, however, not a few cases in which vivid colors are themselves protective.” So, while the colors of different animals generally match their environment, sometimes there are cases in which vivid colors offer better protection, as in the case of the kingfisher. There is no one rule about how an animal’s coloring might be adapted. As the author says, “The blue harmonizes with the water, and the bird as it darts along the stream looks almost like a flash of sunlight.” So, the kingfisher is better protected by vibrant colors.
Compare your answer with the correct one above
Adapted from “The Stars” by Sir Robert S. Ball in Wonders of Earth, Sea, and Sky (1902, ed. Edward Singleton Holden)
The group of bodies that cluster around our sun forms a little island in the extent of infinite space. We may illustrate this by drawing a map in which we shall endeavor to show the stars placed at their proper relative distances.
We first open the compasses one inch, and thus draw a little circle to represent the path of Earth. We are not going to put in all the planets; we take Neptune, the outermost, at once. To draw its path, I open the compasses to thirty inches, and draw a circle with that radius. That will do for our solar system, though the comets no doubt will roam beyond these limits.
To complete our map, we ought to put in some stars. There are a hundred million to choose from, and we shall begin with the brightest. It is often called the Dog Star, but astronomers know it better as Sirius. Let us see where it is to be placed on our map. Sirius is a good deal further off than Neptune; so I try at the edge of the drawing-board; I have got a method of making a little calculation that I do not intend to trouble you with, but I can assure you that the results it leads me to are quite correct; they show me that this board is not big enough. But could a board which was big enough fit into this lecture theatre? No; in fact, the board would have to go out through the wall of the theatre, out through London. Indeed, big as London is, it would not be large enough to contain the drawing-board that I should require. It would have to stretch about twenty miles from where we are now assembled. We may therefore dismiss any hope of making a practical map of our system on this scale if Sirius is to have its proper place.
Let us, then, take some other star. We shall naturally try with the nearest of all. It is one that we do not know in this part of the world, but those that live in the southern hemisphere are well acquainted with it. The name of this star is Alpha Centauri. Even for this star, we should require a drawing three or four miles long if the distance from the earth to the sun is to be taken as one inch.
You see what an isolated position our sun and its planets occupy. The stars might be very troublesome neighbors if they were very much closer to our system; it is therefore well they are so far off. If they were near at hand, they would drag us into unpleasantly great heat by bringing us too close to the sun, or produce a coolness by pulling us away from the sun, which would be quite as disagreeable.
Why is the vastness of the universe considered so important by the author?
Adapted from “The Stars” by Sir Robert S. Ball in Wonders of Earth, Sea, and Sky (1902, ed. Edward Singleton Holden)
The group of bodies that cluster around our sun forms a little island in the extent of infinite space. We may illustrate this by drawing a map in which we shall endeavor to show the stars placed at their proper relative distances.
We first open the compasses one inch, and thus draw a little circle to represent the path of Earth. We are not going to put in all the planets; we take Neptune, the outermost, at once. To draw its path, I open the compasses to thirty inches, and draw a circle with that radius. That will do for our solar system, though the comets no doubt will roam beyond these limits.
To complete our map, we ought to put in some stars. There are a hundred million to choose from, and we shall begin with the brightest. It is often called the Dog Star, but astronomers know it better as Sirius. Let us see where it is to be placed on our map. Sirius is a good deal further off than Neptune; so I try at the edge of the drawing-board; I have got a method of making a little calculation that I do not intend to trouble you with, but I can assure you that the results it leads me to are quite correct; they show me that this board is not big enough. But could a board which was big enough fit into this lecture theatre? No; in fact, the board would have to go out through the wall of the theatre, out through London. Indeed, big as London is, it would not be large enough to contain the drawing-board that I should require. It would have to stretch about twenty miles from where we are now assembled. We may therefore dismiss any hope of making a practical map of our system on this scale if Sirius is to have its proper place.
Let us, then, take some other star. We shall naturally try with the nearest of all. It is one that we do not know in this part of the world, but those that live in the southern hemisphere are well acquainted with it. The name of this star is Alpha Centauri. Even for this star, we should require a drawing three or four miles long if the distance from the earth to the sun is to be taken as one inch.
You see what an isolated position our sun and its planets occupy. The stars might be very troublesome neighbors if they were very much closer to our system; it is therefore well they are so far off. If they were near at hand, they would drag us into unpleasantly great heat by bringing us too close to the sun, or produce a coolness by pulling us away from the sun, which would be quite as disagreeable.
Why is the vastness of the universe considered so important by the author?
Throughout this passage, the author is trying to demonstrate the vastness of our universe by highlighting the difficulty of properly rendering the celestial bodies on a scaled-down model. However, toward the end of the passage, he changes track slightly and declares that it is a good thing the universe is so massive and relatively empty. He says, “The stars might be very troublesome neighbors if they were very much closer to our system; it is therefore well they are so far off. If they were near at hand, they would drag us into unpleasantly great heat by bringing us too close to the sun, or produce a coolness by pulling us away from the sun, which would be quite as disagreeable.” He is arguing that if the other stars were closer to us, they would interfere in our orbit around the sun and would have a harmful impact on our planet.
Throughout this passage, the author is trying to demonstrate the vastness of our universe by highlighting the difficulty of properly rendering the celestial bodies on a scaled-down model. However, toward the end of the passage, he changes track slightly and declares that it is a good thing the universe is so massive and relatively empty. He says, “The stars might be very troublesome neighbors if they were very much closer to our system; it is therefore well they are so far off. If they were near at hand, they would drag us into unpleasantly great heat by bringing us too close to the sun, or produce a coolness by pulling us away from the sun, which would be quite as disagreeable.” He is arguing that if the other stars were closer to us, they would interfere in our orbit around the sun and would have a harmful impact on our planet.
Compare your answer with the correct one above
Adapted from “Introduced Species That Have Become Pests” in Our Vanishing Wild Life, Its Extermination and Protection by William Temple Hornaday (1913)
The man who successfully transplants or "introduces" into a new habitat any persistent species of living thing assumes a very grave responsibility. Every introduced species is doubtful gravel until panned out. The enormous losses that have been inflicted upon the world through the perpetuation of follies with wild vertebrates and insects would, if added together, be enough to purchase a principality. The most aggravating feature of these follies in transplantation is that never yet have they been made severely punishable. We are just as careless and easygoing on this point as we were about the government of the Yellowstone Park in the days when Howell and other poachers destroyed our first national bison herd, and when caught red-handed—as Howell was, skinning seven Park bison cows—could not be punished for it, because there was no penalty prescribed by any law. Today, there is a way in which any revengeful person could inflict enormous damage on the entire South, at no cost to himself, involve those states in enormous losses and the expenditure of vast sums of money, yet go absolutely unpunished!
The gypsy moth is a case in point. This winged calamity was imported at Maiden, Massachusetts, near Boston, by a French entomologist, Mr. Leopold Trouvelot, in 1868 or 69. History records the fact that the man of science did not purposely set free the pest. He was endeavoring with live specimens to find a moth that would produce a cocoon of commercial value to America, and a sudden gust of wind blew out of his study, through an open window, his living and breeding specimens of the gypsy moth. The moth itself is not bad to look at, but its larvae is a great, overgrown brute with an appetite like a hog. Immediately Mr. Trouvelot sought to recover his specimens, and when he failed to find them all, like a man of real honor, he notified the State authorities of the accident. Every effort was made to recover all the specimens, but enough escaped to produce progeny that soon became a scourge to the trees of Massachusetts. The method of the big, nasty-looking mottled-brown caterpillar was very simple. It devoured the entire foliage of every tree that grew in its sphere of influence.
The gypsy moth spread with alarming rapidity and persistence. In course of time, the state authorities of Massachusetts were forced to begin a relentless war upon it, by poisonous sprays and by fire. It was awful! Up to this date (1912) the New England states and the United States Government service have expended in fighting this pest about $7,680,000!
The spread of this pest has been retarded, but the gypsy moth never will be wholly stamped out. Today it exists in Rhode Island, Connecticut, and New Hampshire, and it is due to reach New York at an early date. It is steadily spreading in three directions from Boston, its original point of departure, and when it strikes the State of New York, we, too, will begin to pay dearly for the Trouvelot experiment.
At the time the passage was written, in which of the following states was the gypsy moth NOT found?
Adapted from “Introduced Species That Have Become Pests” in Our Vanishing Wild Life, Its Extermination and Protection by William Temple Hornaday (1913)
The man who successfully transplants or "introduces" into a new habitat any persistent species of living thing assumes a very grave responsibility. Every introduced species is doubtful gravel until panned out. The enormous losses that have been inflicted upon the world through the perpetuation of follies with wild vertebrates and insects would, if added together, be enough to purchase a principality. The most aggravating feature of these follies in transplantation is that never yet have they been made severely punishable. We are just as careless and easygoing on this point as we were about the government of the Yellowstone Park in the days when Howell and other poachers destroyed our first national bison herd, and when caught red-handed—as Howell was, skinning seven Park bison cows—could not be punished for it, because there was no penalty prescribed by any law. Today, there is a way in which any revengeful person could inflict enormous damage on the entire South, at no cost to himself, involve those states in enormous losses and the expenditure of vast sums of money, yet go absolutely unpunished!
The gypsy moth is a case in point. This winged calamity was imported at Maiden, Massachusetts, near Boston, by a French entomologist, Mr. Leopold Trouvelot, in 1868 or 69. History records the fact that the man of science did not purposely set free the pest. He was endeavoring with live specimens to find a moth that would produce a cocoon of commercial value to America, and a sudden gust of wind blew out of his study, through an open window, his living and breeding specimens of the gypsy moth. The moth itself is not bad to look at, but its larvae is a great, overgrown brute with an appetite like a hog. Immediately Mr. Trouvelot sought to recover his specimens, and when he failed to find them all, like a man of real honor, he notified the State authorities of the accident. Every effort was made to recover all the specimens, but enough escaped to produce progeny that soon became a scourge to the trees of Massachusetts. The method of the big, nasty-looking mottled-brown caterpillar was very simple. It devoured the entire foliage of every tree that grew in its sphere of influence.
The gypsy moth spread with alarming rapidity and persistence. In course of time, the state authorities of Massachusetts were forced to begin a relentless war upon it, by poisonous sprays and by fire. It was awful! Up to this date (1912) the New England states and the United States Government service have expended in fighting this pest about $7,680,000!
The spread of this pest has been retarded, but the gypsy moth never will be wholly stamped out. Today it exists in Rhode Island, Connecticut, and New Hampshire, and it is due to reach New York at an early date. It is steadily spreading in three directions from Boston, its original point of departure, and when it strikes the State of New York, we, too, will begin to pay dearly for the Trouvelot experiment.
At the time the passage was written, in which of the following states was the gypsy moth NOT found?
The part of the passage most relevant to this question is found in the last paragraph:
“The spread of this pest has been retarded, but the gypsy moth never will be wholly stamped out. Today it exists in Rhode Island, Connecticut, and New Hampshire, and it is due to reach New York at an early date.”
We can tell that “New York” is the answer based on this quotation, but one state remains unaccounted for: Massachusetts. Earlier in the passage, we are told that the gypsy moth “was imported at Maiden, Massachusetts, near Boston,” and that “enough escaped to produce progeny that soon became a scourge to the trees of Massachusetts.” We can infer that the gypsy moth is found in Massachusetts at the time the passage was written, especially given that the author writes, “In course of time, the state authorities of Massachusetts were forced to begin a relentless war upon it, by poisonous sprays and by fire. It was awful! Up to this date (1912) the New England states and the United States Government service have expended in fighting this pest about $7,680,000!” This quotation—especially the author’s use of the transition “Up to this date”—suggests that the gypsy moth remained a problem in Massachusetts at the time the author was writing.
The part of the passage most relevant to this question is found in the last paragraph:
“The spread of this pest has been retarded, but the gypsy moth never will be wholly stamped out. Today it exists in Rhode Island, Connecticut, and New Hampshire, and it is due to reach New York at an early date.”
We can tell that “New York” is the answer based on this quotation, but one state remains unaccounted for: Massachusetts. Earlier in the passage, we are told that the gypsy moth “was imported at Maiden, Massachusetts, near Boston,” and that “enough escaped to produce progeny that soon became a scourge to the trees of Massachusetts.” We can infer that the gypsy moth is found in Massachusetts at the time the passage was written, especially given that the author writes, “In course of time, the state authorities of Massachusetts were forced to begin a relentless war upon it, by poisonous sprays and by fire. It was awful! Up to this date (1912) the New England states and the United States Government service have expended in fighting this pest about $7,680,000!” This quotation—especially the author’s use of the transition “Up to this date”—suggests that the gypsy moth remained a problem in Massachusetts at the time the author was writing.
Compare your answer with the correct one above
Adapted from “Introduced Species That Have Become Pests” in Our Vanishing Wild Life, Its Extermination and Protection by William Temple Hornaday (1913)
The man who successfully transplants or "introduces" into a new habitat any persistent species of living thing assumes a very grave responsibility. Every introduced species is doubtful gravel until panned out. The enormous losses that have been inflicted upon the world through the perpetuation of follies with wild vertebrates and insects would, if added together, be enough to purchase a principality. The most aggravating feature of these follies in transplantation is that never yet have they been made severely punishable. We are just as careless and easygoing on this point as we were about the government of the Yellowstone Park in the days when Howell and other poachers destroyed our first national bison herd, and when caught red-handed—as Howell was, skinning seven Park bison cows—could not be punished for it, because there was no penalty prescribed by any law. Today, there is a way in which any revengeful person could inflict enormous damage on the entire South, at no cost to himself, involve those states in enormous losses and the expenditure of vast sums of money, yet go absolutely unpunished!
The gypsy moth is a case in point. This winged calamity was imported at Maiden, Massachusetts, near Boston, by a French entomologist, Mr. Leopold Trouvelot, in 1868 or 69. History records the fact that the man of science did not purposely set free the pest. He was endeavoring with live specimens to find a moth that would produce a cocoon of commercial value to America, and a sudden gust of wind blew out of his study, through an open window, his living and breeding specimens of the gypsy moth. The moth itself is not bad to look at, but its larvae is a great, overgrown brute with an appetite like a hog. Immediately Mr. Trouvelot sought to recover his specimens, and when he failed to find them all, like a man of real honor, he notified the State authorities of the accident. Every effort was made to recover all the specimens, but enough escaped to produce progeny that soon became a scourge to the trees of Massachusetts. The method of the big, nasty-looking mottled-brown caterpillar was very simple. It devoured the entire foliage of every tree that grew in its sphere of influence.
The gypsy moth spread with alarming rapidity and persistence. In course of time, the state authorities of Massachusetts were forced to begin a relentless war upon it, by poisonous sprays and by fire. It was awful! Up to this date (1912) the New England states and the United States Government service have expended in fighting this pest about $7,680,000!
The spread of this pest has been retarded, but the gypsy moth never will be wholly stamped out. Today it exists in Rhode Island, Connecticut, and New Hampshire, and it is due to reach New York at an early date. It is steadily spreading in three directions from Boston, its original point of departure, and when it strikes the State of New York, we, too, will begin to pay dearly for the Trouvelot experiment.
Why did Mr. Trouvelot bring gypsy moths to Boston?
Adapted from “Introduced Species That Have Become Pests” in Our Vanishing Wild Life, Its Extermination and Protection by William Temple Hornaday (1913)
The man who successfully transplants or "introduces" into a new habitat any persistent species of living thing assumes a very grave responsibility. Every introduced species is doubtful gravel until panned out. The enormous losses that have been inflicted upon the world through the perpetuation of follies with wild vertebrates and insects would, if added together, be enough to purchase a principality. The most aggravating feature of these follies in transplantation is that never yet have they been made severely punishable. We are just as careless and easygoing on this point as we were about the government of the Yellowstone Park in the days when Howell and other poachers destroyed our first national bison herd, and when caught red-handed—as Howell was, skinning seven Park bison cows—could not be punished for it, because there was no penalty prescribed by any law. Today, there is a way in which any revengeful person could inflict enormous damage on the entire South, at no cost to himself, involve those states in enormous losses and the expenditure of vast sums of money, yet go absolutely unpunished!
The gypsy moth is a case in point. This winged calamity was imported at Maiden, Massachusetts, near Boston, by a French entomologist, Mr. Leopold Trouvelot, in 1868 or 69. History records the fact that the man of science did not purposely set free the pest. He was endeavoring with live specimens to find a moth that would produce a cocoon of commercial value to America, and a sudden gust of wind blew out of his study, through an open window, his living and breeding specimens of the gypsy moth. The moth itself is not bad to look at, but its larvae is a great, overgrown brute with an appetite like a hog. Immediately Mr. Trouvelot sought to recover his specimens, and when he failed to find them all, like a man of real honor, he notified the State authorities of the accident. Every effort was made to recover all the specimens, but enough escaped to produce progeny that soon became a scourge to the trees of Massachusetts. The method of the big, nasty-looking mottled-brown caterpillar was very simple. It devoured the entire foliage of every tree that grew in its sphere of influence.
The gypsy moth spread with alarming rapidity and persistence. In course of time, the state authorities of Massachusetts were forced to begin a relentless war upon it, by poisonous sprays and by fire. It was awful! Up to this date (1912) the New England states and the United States Government service have expended in fighting this pest about $7,680,000!
The spread of this pest has been retarded, but the gypsy moth never will be wholly stamped out. Today it exists in Rhode Island, Connecticut, and New Hampshire, and it is due to reach New York at an early date. It is steadily spreading in three directions from Boston, its original point of departure, and when it strikes the State of New York, we, too, will begin to pay dearly for the Trouvelot experiment.
Why did Mr. Trouvelot bring gypsy moths to Boston?
The second paragraph of the passage tells the story of how Mr. Trouvelot released the gypsy moths, so we should look there for our answer. In it, the author writes that the gypsy moth “was imported at Maiden, Massachusetts, near Boston, by a French entomologist, Mr. Leopold Trouvelot, in 1868 or 69”; this allows us to eliminate the answer “Mr. Trouvelot did not bring gypsy moths to Boston; he brought them to Yellowstone National Park.” The author then explains that Trouvelot “was endeavoring with live specimens to find a moth that would produce a cocoon of commercial value to America.” Therefore, the correct answer is “He was trying to find a moth that would make a cocoon he could sell.”
The second paragraph of the passage tells the story of how Mr. Trouvelot released the gypsy moths, so we should look there for our answer. In it, the author writes that the gypsy moth “was imported at Maiden, Massachusetts, near Boston, by a French entomologist, Mr. Leopold Trouvelot, in 1868 or 69”; this allows us to eliminate the answer “Mr. Trouvelot did not bring gypsy moths to Boston; he brought them to Yellowstone National Park.” The author then explains that Trouvelot “was endeavoring with live specimens to find a moth that would produce a cocoon of commercial value to America.” Therefore, the correct answer is “He was trying to find a moth that would make a cocoon he could sell.”
Compare your answer with the correct one above