College Chemistry : Chemical Equilibrium, Equilibrium Constant, and Reaction Quotient

Study concepts, example questions & explanations for College Chemistry

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Chemical Equilibrium, Equilibrium Constant, And Reaction Quotient

Consider the following reaction:

\displaystyle 2\text{Si}_2\text{H}_6(g)+7\text{O}_2(g)\rightleftharpoons4\text{SiO}_2(g)+6\text{H}_2\text{O}(l)

Give the expression for the equilibrium constant for this reaction.

Possible Answers:

\displaystyle (\text{P}_{Si_2H_6})^2(\text{P}_{O_2})^7(\text{P}_{SiO_2})^4

\displaystyle \frac{(\text{P}_{SiO_2})^4[(\text{H}_2\text{O}])^6}{(\text{P}_{Si_2H_6})^2(\text{P}_{O_2})^7}

\displaystyle \frac{(\text{P}_{Si_2H_6})^2(\text{P}_{O_2})^7}{(\text{P}_{SiO_2})^4}

\displaystyle \frac{(\text{P}_{SiO_2})^4}{(\text{P}_{Si_2H_6})^2(\text{P}_{O_2})^7}

Correct answer:

\displaystyle \frac{(\text{P}_{SiO_2})^4}{(\text{P}_{Si_2H_6})^2(\text{P}_{O_2})^7}

Explanation:

Recall how to find the expression of the equilibrium constant for the simplified equation:

\displaystyle aA+bB\rightleftharpoons cC+dD

\displaystyle \text{K}_{eq}=\frac{[C]^c[D]^d}{[A]^a[B]^b}

Since the given equation has gases, we will only consider the partial pressures of each gas in the expression for the equilibrium constant. Remember that only molecules in aqueous and gas forms are included in this expression. Pure solids and pure liquids are excluded.

Thus, we can then write the following equilibrium constant for the given equation:

\displaystyle \text{K}_{eq}=\frac{(\text{P}_{SiO_2})^4}{(\text{P}_{Si_2H_6})^2(\text{P}_{O_2})^7}

Example Question #1 : Equilibrium

Consider the following reaction:

\displaystyle 4\text{HCl}(g)+\text{O}_2(g)\rightleftharpoons 2\text{H}_2\text{O}(l)+2\text{Cl}_2(g)

The reaction mixture at  initially contains \displaystyle [\text{HCl}]=0.750M and \displaystyle [\text{O}_2]=2.00M. At equilibrium, \displaystyle [\text{HCl}]=0.650M. What is the equilibrium constant for the reaction?

Possible Answers:

\displaystyle 0.0121

\displaystyle 0.250

\displaystyle 0.158

\displaystyle 0.113

Correct answer:

\displaystyle 0.113

Explanation:

Start by writing the equilibrium expression:

\displaystyle K=\frac{[Cl_2]^2}{[HCl]^4[O_2]}

Now, create a chart like the following to keep track of the changes in concentration.

  \displaystyle [HCl] \displaystyle [O_2] \displaystyle [Cl_2]
Initial 0.750 2.00 0.00
Change -0.100 -0.025 0.200
Equilibrium 0.650 19.75 0.200

Since we know that the concentration of HCl decreased by \displaystyle 0.100M, we can use the stoichiometric ratios to deduce the amount of change for the oxygen gas and the chlorine gas.

Plug in the equilibrium concentrations into the expression for the equilibrium constant.

\displaystyle K=\frac{(0.200)^2}{(0.650)^4(1.975)}=0.113

Example Question #3 : Chemical Equilibrium, Equilibrium Constant, And Reaction Quotient

Calculate the equilibrium constant at \displaystyle 298K for the reaction by using free energies of formation.

\displaystyle I_2(g)+Cl_2(g)\rightleftharpoons 2ICl(g)

Possible Answers:

\displaystyle 1.95\times 10^5

\displaystyle 8.55\times 10^4

\displaystyle 7.44\times 10^5

\displaystyle 2.39\times 10^5

Correct answer:

\displaystyle 1.95\times 10^5

Explanation:

Start by using the free energies of formation to find .

 

Recall the equation that links together  with the equilibrium constant, \displaystyle K.

Plug in the given information and solve for \displaystyle K.

\displaystyle -30.18(1000)=-(8.314)(298)\ln K

\displaystyle \ln K=12.18

\displaystyle K=e^{12.18}=1.95\times 10^5

Example Question #1 : Equilibrium

\displaystyle 2NO(g)+Br_{2}(g)\rightleftharpoons 2NOBr(g)

Consider a reaction mixture using the equation shown. At equilibrium the partial pressure of \displaystyle NO is \displaystyle 113torr and the partial pressure of \displaystyle Br_{2} is \displaystyle 132torr. What is the partial pressure of \displaystyle NOBr in this mixture if \displaystyle k_{p}=30.6 at \displaystyle 298^{\circ}K?

Possible Answers:

\displaystyle .343atm or \displaystyle 260.5torr

\displaystyle .308atm or \displaystyle 234torr 

\displaystyle .117atm or \displaystyle 89.3torr

\displaystyle .362atm or \displaystyle 275torr 

Correct answer:

\displaystyle .343atm or \displaystyle 260.5torr

Explanation:

\displaystyle k_{p}= \frac{P(product)^{a}}{P(reactant)^{b}*P(reactant)^{c}}

\displaystyle k_{p}=30.6= \frac{P(NOBr)^{2}}{(\frac{132}{760})*(\frac{113}{760})^{2}}

Use algebra to solve for the partial pressure of \displaystyle NOBr.

\displaystyle \sqrt{30.6*(\frac{132}{760})*(\frac{113}{760})^{2}}=P(NOBr) 

\displaystyle 0.343atm=P(NOBr)

Example Question #1 : Equilibrium

\displaystyle 2NO(g)+Br_{2}(g)\rightleftharpoons 2NOBr(g)

Considering the reaction shown, if the partial pressures of \displaystyle NO\displaystyle Br_{2}, and \displaystyle NOBr are \displaystyle 125torr each, is the mixture at equilibrium? If not which direction will the reaction proceed to reach equilibrium if \displaystyle k_{p}=30.6?

Possible Answers:

Yes

Yes, the reaction will move towards the products.

No, the reaction will proceed left towards the reactants. 

No, reaction will proceed right towards the products.

Correct answer:

No, reaction will proceed right towards the products.

Explanation:

\displaystyle Q_{p}=\frac{(\frac{125}{760})^{2}}{(\frac{125}{760})*(\frac{125}{760})^{2}}=6.08

\displaystyle k_p=30.6

Since \displaystyle k>Q the reaction is not at equilibrium. This means that at equilibrium, the ratio of products to reactants is greater than at the given conditions. Thus, the reaction will move right towards the products to reach equilibrium.

Example Question #31 : Reactions

\displaystyle CO(g)+H_{2}O(g)\rightleftharpoons CO_{2}(g)+H_{2}(g)

In the laboratory \displaystyle .43mol of \displaystyle CO and \displaystyle .48mol of \displaystyle H_{2}O are reacted in a \displaystyle 1L beaker. At equilibrium \displaystyle .24mol of \displaystyle CO remain. Using the equation shown calculate the equilibrium constant.

Possible Answers:

\displaystyle k_{c}=.63

\displaystyle k_{c}=.28

\displaystyle k_{c}=1.93

\displaystyle k_{c}=.52

Correct answer:

\displaystyle k_{c}=.52

Explanation:

Use an ice table and the \displaystyle k_{c} equation to solve.                      

                        \displaystyle CO             \displaystyle H_{2}O            \displaystyle CO_{2}              \displaystyle H_{2} 

Initial              \displaystyle .43M          \displaystyle .48M              \displaystyle 0                 \displaystyle 0

Change        \displaystyle -.19M      \displaystyle -.19M        \displaystyle +.19M      \displaystyle +.19M   

Equilibrium      \displaystyle .24M          \displaystyle .29M           \displaystyle .19M         \displaystyle .19M    

\displaystyle k_{c}= \frac{[H_{2}][CO_{2}]}{[CO][H_{2}O]}

\displaystyle k_{c}=\frac{.19M*.19M}{.24M*.29M}=.52

Example Question #1 : Chemical Equilibrium, Equilibrium Constant, And Reaction Quotient

\displaystyle N_{2}O_{4}(g) \rightleftharpoons 2NO_{2}(g)

Find the \displaystyle k_{c} of the reaction if you start with \displaystyle .027M N_{2}O_{4}(g) and end with \displaystyle .015M N_{2}O_{4}(g) at \displaystyle STP.

Possible Answers:

\displaystyle k_{c}=104.2

\displaystyle k_{c}=1.25

\displaystyle k_{c}=.8

\displaystyle k_{c}=.0096

Correct answer:

\displaystyle k_{c}=.0096

Explanation:

Use an ICE table and the \displaystyle k_{c} equation to solve.

                         \displaystyle [N_{2}O_{4}]     \displaystyle [NO_{2}] 

Initial               \displaystyle .027M         \displaystyle 0M        

Change         \displaystyle -.012M    \displaystyle +.012M   

Equilibrium      \displaystyle .015M       \displaystyle .012M  

\displaystyle k_{c}= \frac{[NO_{2}]^2}{[N_{2}O_{4}]}=\frac{.012M^2}{.015M}=.0096

Example Question #1 : Chemical Equilibrium, Equilibrium Constant, And Reaction Quotient

Hypobromous acid will dissociate in water at \displaystyle 25^{o}C with a \displaystyle K_{a}=2.3\cdot10^{-9}. What is the \displaystyle \Delta G^{o} for this dissociation process?

Possible Answers:

\displaystyle +49\:\frac{kJ}{mol}

\displaystyle +33\:\frac{kJ}{mol}

\displaystyle -33\:\frac{kJ}{mol}

\displaystyle +55\:\frac{kJ}{mol}

\displaystyle -49\:\frac{kJ}{mol}

Correct answer:

\displaystyle +49\:\frac{kJ}{mol}

Explanation:

For this question, we're given the acid dissociation constant for a reaction that occurs at a given temperature. We're asked to find the standard free energy change for the reaction.

First, we're going to need to use an equation that relates standard free energy changes with an equilibrium constant, which is shown as follows.

\displaystyle \Delta G^{o}=-RTln(K)

With regards to the temperature, we will need to convert the units given in the question stem into units of Kelvin.

\displaystyle T=25+273=298\:K

Knowing that \displaystyle R is the ideal gas constant, we have all the information we need to solve for the value of \displaystyle \Delta G^{o}.

\displaystyle \Delta G^{o}=-(8.314\:\frac{J}{mol\cdot K})(298\:K)ln(2.3\cdot 10^{-9})

\displaystyle \Delta G^{o}=49279\:\frac{J}{mol}\approx 49\:\frac{kJ}{mol}

Example Question #3 : Equilibrium

\displaystyle HCO_{3}^{-}(aq)\ +\ H_{2}O(l)\rightleftharpoons\ H_{3}O^{+}(aq)\ +\ CO_{3}^{2-}(aq)

Determine the acid dissociation constant expression for the given reaction.

Possible Answers:

\displaystyle K_{a}=\frac{[HCO_{3}^{-}]}{[H_{3}O^{+}][CO_{3}^{2-}]}

\displaystyle K_{a}=\frac{[H_{3}O^{+}][CO_{3}^{2-}]}{[HCO_{3}^{-}][H_{2}O]}

\displaystyle K_{a}=\frac{[H_{3}O^{+}][CO_{3}^{2-}]}{[HCO_{3}^{-}]}

\displaystyle K_{a}=\frac{[HCO_{3}^{-}][H_{2}O]}{[H_{3}O^{+}][CO_{3}^{2-}]}

Correct answer:

\displaystyle K_{a}=\frac{[H_{3}O^{+}][CO_{3}^{2-}]}{[HCO_{3}^{-}]}

Explanation:

Acid dissociation constant which is denoted as \displaystyle K_{a} is the equilibrium constant for the ionization of an acid. Therefore, the numerator contains the product of the concentrations of the substances on the product side of the chemical equation. The denominator contains the product of the concentrations of the substances on the reactant side of the chemical equation. \displaystyle H_{2}O is omitted in the acid dissociation constant expression because as the solvent it is in excess and therefore the change in its concentration is negligible in comparison to the other substances in solution.

Learning Tools by Varsity Tutors