High School Math : Applying the Law of Sines

Study concepts, example questions & explanations for High School Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Triangles

 

 

Rt_triangle_letters
In this figure, angle \(\displaystyle a=30^\circ\) and side \(\displaystyle Z=15\). If angle \(\displaystyle b=45^\circ\), what is the length of side \(\displaystyle Y\)?

Possible Answers:

\(\displaystyle 15\sqrt{2}\)

\(\displaystyle 7.5\)

\(\displaystyle 30\)

\(\displaystyle 30\sqrt{2}\)

\(\displaystyle \frac{15\sqrt{2}}{2}\)

Correct answer:

\(\displaystyle 15\sqrt{2}\)

Explanation:

For this problem, use the law of sines:

\(\displaystyle \frac{\text{side opposite }a}{\sin(a)}=\frac{\text{side opposite }b}{\sin(b)}=\frac{\text{side opposite }c}{\sin(c)}\).

In this case, we have values that we can plug in:

\(\displaystyle \frac{\text{side opposite }a}{\sin(a)}=\frac{\text{side opposite }b}{\sin(b)}\)

\(\displaystyle \frac{Z}{\sin(a)}=\frac{Y}{\sin{(b)}}\)

\(\displaystyle \frac{15}{\sin(30^\circ)}=\frac{Y}{\sin{(45^\circ)}}\)

\(\displaystyle \frac{15}{\frac{1}{2}}=\frac{Y}{\frac{\sqrt{2}}{2}}\)

Cross multiply:

\(\displaystyle 15*\frac{\sqrt{2}}{2}=\frac{1}{2}Y\)

Multiply both sides by \(\displaystyle 2\):

\(\displaystyle 15\sqrt{2}=Y\)

Example Question #2 : Triangles

Rt_triangle_letters

In this figure \(\displaystyle a=22^\circ\) and \(\displaystyle c=85^\circ\). If \(\displaystyle X=30\), what is \(\displaystyle Z\)?

Possible Answers:

\(\displaystyle 20.1\)

\(\displaystyle 11.28\)

\(\displaystyle 0.997\)

\(\displaystyle 0.374\)

\(\displaystyle 30.09\)

Correct answer:

\(\displaystyle 11.28\)

Explanation:

For this problem, use the law of sines:

\(\displaystyle \frac{\text{side opposite }a}{\sin(a)}=\frac{\text{side opposite }b}{\sin(b)}=\frac{\text{side opposite }c}{\sin(c)}\).

In this case, we have values that we can plug in:

\(\displaystyle \frac{\text{side opposite }a}{\sin(a)}=\frac{\text{side opposite }c}{\sin(c)}\)

\(\displaystyle \frac{Z}{\sin(a)}=\frac{X}{\sin{(c)}}\)

\(\displaystyle \frac{Z}{\sin(22^\circ)}=\frac{30}{\sin{85^\circ}}\)

\(\displaystyle \frac{Z}{0.375}=\frac{30}{0.997}\)

\(\displaystyle \frac{Z}{0.375}=30.09\)

\(\displaystyle Z=30.09*0.375\)

\(\displaystyle Z=11.28\)

Example Question #3 : Applying The Law Of Sines

In \(\displaystyle \Delta ABC\)\(\displaystyle m \angle A = 75^{\circ }\) , \(\displaystyle m \angle B = 62^{\circ }\), and \(\displaystyle BC = 16\). To the nearest tenth, what is \(\displaystyle AB\)?

Possible Answers:

\(\displaystyle 22.7\)

\(\displaystyle 27.9\)

\(\displaystyle 11.3\)

\(\displaystyle 14.6\)

\(\displaystyle 17.5\)

Correct answer:

\(\displaystyle 11.3\)

Explanation:

Since we are given \(\displaystyle BC\) and want to find \(\displaystyle AB\), we apply the Law of Sines, which states, in part,

\(\displaystyle \frac{ \sin m \angle A}{B C} = \frac{ \sin m \angle C}{AB}\)

\(\displaystyle m \angle A = 75^{\circ }\) and

\(\displaystyle m \angle C = 180 - \left ( m \angle A + m \angle B \right )= 180 -(75+ 62) = 180 -137 = 43^{\circ }\)

Substitute in the above equation:

\(\displaystyle \frac{ \sin75^{\circ }}{16} = \frac{ \sin 43^{\circ }}{AB}\)

Cross-multiply and solve for \(\displaystyle AB\):

\(\displaystyle AB\cdot \sin75^{\circ } = 16 \cdot \sin 43^{\circ }\)

\(\displaystyle AB = \frac{16 \cdot \sin 43^{\circ }}{\sin75^{\circ }} = \frac{16 \cdot \0.6820}{0.9659} \approx 11.3\)

Example Question #4 : Applying The Law Of Sines

In \(\displaystyle \Delta ABC\)\(\displaystyle m \angle A = 66^{\circ }\) , \(\displaystyle AB = 16\), and \(\displaystyle BC = 23\). To the nearest tenth, what is \(\displaystyle m \angle C\)?

Possible Answers:

\(\displaystyle 39.5^{\circ } \textrm{ or } 140.5^{\circ }\)

\(\displaystyle 73.6^{\circ }\)

No triangle can exist with these characteristics.

\(\displaystyle 39.5^{\circ }\)

\(\displaystyle 73.6^{\circ } \textrm{ or }106.4^{\circ }\)

Correct answer:

\(\displaystyle 39.5^{\circ }\)

Explanation:

Since we are given \(\displaystyle m \angle A\) , \(\displaystyle AB\), and \(\displaystyle BC\), and want to find \(\displaystyle m \angle C\), we apply the Law of Sines, which states, in part,

\(\displaystyle \frac{ \sin m \angle C}{AB} = \frac{ \sin m \angle A}{B C}\).

Substitute and solve for \(\displaystyle \sin m \angle C\):

\(\displaystyle \frac{ \sin m \angle C}{16} = \frac{ \sin 66^{\circ }}{23}\)

\(\displaystyle \frac{ \sin m \angle C}{16} \cdot 16= \frac{ \sin 66^{\circ }}{23}\cdot 16\)

\(\displaystyle \sin m \angle C = \frac{ \sin 66^{\circ }}{23}\cdot 16 \approx \frac{ 0.9135}{23}\cdot 16\approx 0.6355\)

Take the inverse sine of 0.6355:

\(\displaystyle m \angle C = \sin^{-1} 0.6355 \approx 39.5^{\circ }\)

There are two angles between \(\displaystyle 0^{\circ }\) and \(\displaystyle 180^{\circ }\) that have any given positive sine other than 1 - we get the other by subtracting the previous result from \(\displaystyle 180^{\circ }\):

\(\displaystyle 180 - 39.5 = 140.5^{\circ }\)

This, however, is impossible, since this would result in the sum of the triangle measures being greater than \(\displaystyle 180^{\circ }\). This leaves \(\displaystyle 39.5^{\circ }\) as the only possible answer.

Example Question #1 : Law Of Sines

Rt_triangle_letters

In this figure, angle \(\displaystyle a=30^\circ\). If side \(\displaystyle Z =12\) and \(\displaystyle Y=20\), what is the value of angle \(\displaystyle b\)?

Possible Answers:

Undefined

\(\displaystyle 90^\circ\)

\(\displaystyle 24^\circ\)

\(\displaystyle 0.83^\circ\)

\(\displaystyle 56.44^\circ\)

Correct answer:

\(\displaystyle 56.44^\circ\)

Explanation:

For this problem, use the law of sines:

\(\displaystyle \frac{\text{side opposite }a}{\sin(a)}=\frac{\text{side opposite }b}{\sin(b)}=\frac{\text{side opposite }c}{\sin(c)}\).

In this case, we have values that we can plug in:

\(\displaystyle \frac{\text{side opposite }a}{\sin(a)}=\frac{\text{side opposite }b}{\sin(b)}\)

\(\displaystyle \frac{Z}{\sin(a)}=\frac{Y}{\sin{(b)}}\)

\(\displaystyle \frac{12}{\sin(30^\circ)}=\frac{20}{\sin{(b)}}\)

\(\displaystyle 24=\frac{20}{\sin(b)}\)

\(\displaystyle \sin(b)=\frac{20}{24}\)

\(\displaystyle b=\sin^{-1}(\frac{20}{24})\)

\(\displaystyle b=56.44^\circ\)

Example Question #1 : Applying The Law Of Sines

Rt_triangle_lettersIn this figure, if angle \(\displaystyle a=18.5^\circ\), side \(\displaystyle Z =30.2\), and side \(\displaystyle Y=17.2\), what is the value of angle \(\displaystyle b\)?

(NOTE: Figure not necessarily drawn to scale.)

Possible Answers:

\(\displaystyle 61.22^\circ\)

Undefined

\(\displaystyle 33.6^\circ\)

\(\displaystyle 71.5^\circ\)

\(\displaystyle 10.41^\circ\)

Correct answer:

\(\displaystyle 10.41^\circ\)

Explanation:

First, observe that this figure is clearly not drawn to scale. Now, we can solve using the law of sines:

\(\displaystyle \frac{\text{side opposite }a}{\sin(a)}=\frac{\text{side opposite }b}{\sin(b)}=\frac{\text{side opposite }c}{\sin(c)}\).

In this case, we have values that we can plug in:

\(\displaystyle \frac{\text{side opposite }a}{\sin(a)}=\frac{\text{side opposite }b}{\sin(b)}\)

\(\displaystyle \frac{Z}{\sin(a)}=\frac{Y}{\sin{(b)}}\)

\(\displaystyle \frac{30.2}{\sin(18.5^\circ)}=\frac{17.2}{\sin{(b)}}\)

\(\displaystyle 95.18=\frac{17.2}{\sin(b)}\)

\(\displaystyle \sin(b)=\frac{17.2}{95.18}\)

\(\displaystyle b=\sin^{-1}(\frac{17.2}{95.18})\)

\(\displaystyle b=10.41^\circ\)

Learning Tools by Varsity Tutors