New SAT Math - Calculator : Sine, Cosine, & Tangent

Study concepts, example questions & explanations for New SAT Math - Calculator

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Sin, Cos, Tan

Find the value of the trigonometric function in fraction form for triangle \displaystyle ABC.

Triangle

What is the cosine of \displaystyle \angle B?

Possible Answers:

\displaystyle \frac{7}{25}

\displaystyle 7

\displaystyle 7/24

\displaystyle 24/25

Correct answer:

\displaystyle \frac{7}{25}

Explanation:

The cosine of an angle is the value of the adjacent side over the hypotenuse.

Therefore:

\displaystyle cos \angle B = \frac{adjacent}{hypotenuse} = \frac{7}{25}

Example Question #1 : Trigonometry

If cos x = 0.2 and sin x = 0.4, what is the value of tan x?

Possible Answers:

1

4

10

2

0.035

Correct answer:

2

Explanation:

\displaystyle \small \tan{x}=\frac{\sin{x}}{\cos{x}}

\displaystyle \small \small \tan{x}=\frac{0.4}{0.2}

\displaystyle \small \tan{x}=0.035

\displaystyle \small x=\tan^{-1}0.035

\displaystyle \small x=2

Example Question #1 : Sin, Cos, Tan

What is the value of \displaystyle sin(30)+sin(60)?

Possible Answers:

\displaystyle \frac{\sqrt3+1}{2}

\displaystyle -1

\displaystyle 1

\displaystyle \frac{\sqrt3-1}{2}

\displaystyle 0

Correct answer:

\displaystyle \frac{\sqrt3+1}{2}

Explanation:

Solve each term separately.

\displaystyle cos(30)= \frac{\sqrt3}{2}

\displaystyle cos(60)=\frac{1}{2}

Add both terms.

\displaystyle \frac{\sqrt3}{2}+\frac{1}{2}= \frac{\sqrt3+1}{2}

Example Question #3 : Sin, Cos, Tan

Determine the value of \displaystyle 2tan(120).

Possible Answers:

\displaystyle -2\sqrt3

\displaystyle -\frac{\sqrt3}{2}

\displaystyle 2\sqrt3

\displaystyle \sqrt3

\displaystyle -\sqrt3

Correct answer:

\displaystyle -2\sqrt3

Explanation:

Rewrite \displaystyle 2tan(120) in terms of sines and cosines.

\displaystyle 2tan(120)=2(\frac{sin(120)}{cos(120)})=2(\frac{\frac{\sqrt3}{2}}{-\frac{1}{2}})

Simplify the complex fraction.

\displaystyle 2(\frac{\frac{\sqrt3}{2}}{-\frac{1}{2}})= 2\times\frac{\sqrt3}{2}\times-2 = -2\sqrt3

Example Question #1 : Sin, Cos, Tan

Find the value of \displaystyle \frac{1}{2}sin(45)+ tan(60).

Possible Answers:

\displaystyle \frac{\sqrt2-4\sqrt3}{2}

\displaystyle \sqrt2+\sqrt3

\displaystyle \frac{3\sqrt2+\sqrt3}{12}

\displaystyle \frac{\sqrt2+4\sqrt3}{2}

\displaystyle \frac{\sqrt2+4\sqrt3}{4}

Correct answer:

\displaystyle \frac{\sqrt2+4\sqrt3}{4}

Explanation:

To find the value of \displaystyle \frac{1}{2}sin(45)+ tan(60), solve each term separately.

\displaystyle \frac{1}{2}sin(45)=\frac{1}{2} \cdot \frac{\sqrt2}{2} = \frac{\sqrt2}{4}

\displaystyle tan(60) = \sqrt3

Sum the two terms.

\displaystyle \frac{\sqrt2}{4}+\sqrt3 = \frac{\sqrt2}{4}+\frac{4\sqrt3}{4} = \frac{\sqrt2+4\sqrt3}{4}

Example Question #4 : Sin, Cos, Tan

Select the ratio that would give Tan B. 10

Possible Answers:

\displaystyle \tan B=\frac{AC}{AB}

\displaystyle \tan B=\frac{AB}{AC}

None of the other answers.

\displaystyle \tan B=\frac{CB}{AB}

\displaystyle \tan B=\frac{CB}{AC}

Correct answer:

\displaystyle \tan B=\frac{AC}{AB}

Explanation:

We need the Tan B. Which side lengths correspond to this ratio?  

\displaystyle \tan=\frac{opp}{adj}  

Example Question #5 : Sin, Cos, Tan

Calculate \displaystyle tan(\frac{4\pi}{3}).

Possible Answers:

\displaystyle -\sqrt{3}

\displaystyle 1

\displaystyle 0

\displaystyle \sqrt{3}

\displaystyle -1

Correct answer:

\displaystyle \sqrt{3}

Explanation:

The tangent function has a period of \displaystyle \pi units. That is,

\displaystyle tan(x+n\pi)=tanx

for all \displaystyle n\in\mathbb{Z}.

Since \displaystyle \frac{4\pi}{3}=\frac{\pi}{3}+\pi, we can rewrite the original expression \displaystyle tan(\frac{4\pi}{3}) as follows:

\displaystyle tan(\frac{4\pi}{3})=tan(\frac{\pi}{3}+\pi)

                 \displaystyle =tan(\frac{\pi}{3})

                 \displaystyle =\frac{sin(\frac{\pi}{3})}{cos(\frac{\pi}{3})}

                 \displaystyle =\frac{(\frac{\sqrt{3}}{2})}{(\frac{1}{2})}

                 \displaystyle =\sqrt{3}

Hence, 

\displaystyle tan(\frac{4\pi}{3})=\sqrt{3}

Example Question #1 : Sin, Cos, Tan

Calculate \displaystyle cos(\frac{5\pi}{3}).

Possible Answers:

\displaystyle 0

\displaystyle \frac{\sqrt{3}}{2}

\displaystyle \frac{1}{2}

\displaystyle -\frac{\sqrt{3}}{2}

\displaystyle -\frac{1}{2}

Correct answer:

\displaystyle \frac{1}{2}

Explanation:

First, convert the given angle measure from radians to degrees:

\displaystyle cos(\frac{5\pi}{3})=cos(300^{\circ})

Next, recall that \displaystyle 300^{\circ} lies in the fourth quadrant of the unit circle, wherein the cosine is positive. Furthermore, the reference angle of \displaystyle 300^{\circ} is 

\displaystyle 360^{\circ}-300^{\circ}=60^{\circ}

Hence, all that is required is to recognize from these observations that 

\displaystyle cos(\frac{5\pi}{3})=cos(300^{\circ}) =cos(60^{\circ}),

which is \displaystyle \frac{1}{2}.

Therefore,

\displaystyle cos(\frac{5\pi}{3})=\frac{1}{2}

Example Question #2 : Sin, Cos, Tan

What is the result when the following expression is simplified as much as possible?

\displaystyle \sin(2h)\sec(h)+2\sin(-h)

Possible Answers:

\displaystyle 2\sin h

\displaystyle \sec h

\displaystyle 0

\displaystyle 1

Correct answer:

\displaystyle 0

Explanation:

Because \displaystyle \sin x is an odd function, we can rewrite the second term in the expression.

\displaystyle 2\sin(-h)=-2\sin h.

We now use a double-angle formula to expand the first term.

\displaystyle \sin(2h)\sec h=2\sin h\cos h\sec h.

Because they are reciprocals, \displaystyle \cos h\sec h=1.

\displaystyle 2\sin h\cos h\sec h-2\sin h=2\sin h-2\sin h=0.

Example Question #2 : Sin, Cos, Tan

Round to the nearest hundredth. 

Use your calculator to find:

 \displaystyle \sin72^{\circ}

Possible Answers:

\displaystyle 0.72

\displaystyle 1

\displaystyle 0.95

\displaystyle 0.25

None of the above

Correct answer:

\displaystyle 0.95

Explanation:

Before plugging the function into the calculator make sure the mode of the calculator is set to degrees,

Plug in \displaystyle \sin72^{\circ} which equals to \displaystyle 0.95.

Learning Tools by Varsity Tutors