Algebra 1 : How to find fractional percentages

Study concepts, example questions & explanations for Algebra 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Fractions And Percentage

Rewrite   as a fraction in lowest terms.

Possible Answers:

\displaystyle \small \frac{21}{100}

\displaystyle \small \frac{2}{9}

\displaystyle \small \small \frac{23}{99}

\displaystyle \small \frac{16}{75}

\displaystyle \small \frac{32}{125}

Correct answer:

\displaystyle \small \frac{16}{75}

Explanation:

 %   \displaystyle \small = \small \small \frac{21\frac{1}{3}}{100} = 21\frac{1}{3} \div 100 = \frac{64}{3} \div \frac{100}{1} = \frac{64}{3} \cdot \frac{1}{100}

Cross-cancel by dividing 64 and 100 by 4:

\displaystyle \small \small \frac{64}{3} \cdot \frac{1}{100} = \frac{16}{3} \cdot \frac{1}{25} = \frac{16}{75}

which is the fraction we want.

Example Question #2 : Fractions And Percentage

What is \displaystyle \frac{1}{7} \% of \displaystyle 154,000?

Possible Answers:

\displaystyle 22

\displaystyle 22,000

\displaystyle 2.2

\displaystyle 220

\displaystyle 2,200

Correct answer:

\displaystyle 220

Explanation:

\displaystyle \frac{1}{7} \% of \displaystyle 154,000 can be calculated as follows.

First, we need to convert \displaystyle \frac{1}{7} \% into a fraction that we can use in calculations. The percentage symbol tells us that the value is divided by \displaystyle 100.

\displaystyle \frac{1}{7}\% =\frac{\frac{1}{7}}{100}

Now we can multiply our given value by this fraction to find our answer.

 

Example Question #3 : Fractions And Percentage

What is \displaystyle \frac{1}{2} % of \displaystyle \frac{1}{3} ?

Possible Answers:

\displaystyle \frac{1}{6,000}

\displaystyle \frac{1}{1,500}

\displaystyle \frac{1}{600 }

\displaystyle \frac{1}{6}

\displaystyle \frac{1}{150}

Correct answer:

\displaystyle \frac{1}{600 }

Explanation:

Set up a proportion statement:

\displaystyle \frac{\frac{1}{2}}{100} = \frac{N}{\frac{1}{3}}

Cross-multiply and solve for \displaystyle N:

\displaystyle N \cdot 100 = \frac{1}{2} \cdot \frac{1}{3}

\displaystyle N \cdot 100 = \frac{1}{6}

\displaystyle N \cdot 100 \cdot \frac{1}{100} = \frac{1}{6} \cdot \frac{1}{100}

\displaystyle N = \frac{1}{600}

Example Question #4 : How To Find Fractional Percentages

\displaystyle \frac{1}{5} is what percent of \displaystyle 1 \frac{2}{5} ?

Possible Answers:

\displaystyle 18 \frac{1}{4} %

\displaystyle 28 \frac{4}{7} %

\displaystyle 22 \frac{1}{5} %

\displaystyle 17 \frac{1}{2} %

\displaystyle 14 \frac{2}{7} %

Correct answer:

\displaystyle 14 \frac{2}{7} %

Explanation:

Set up a proportion statement:

\displaystyle \frac{P}{100} = \frac{\frac{1}{5}}{1 \frac{2}{5}}

Simplify the right side and solve for \displaystyle P:

\displaystyle \frac{P}{100} = \frac{1}{5} \div 1 \frac{2}{5} = \frac{1}{5} \div \frac{7}{5} = \frac{1}{5} \cdot \frac{5}{7} = \frac{1}{7}

\displaystyle \frac{P}{100} \cdot 100 = \frac{1}{7}\cdot 100

\displaystyle P= \frac{100}{7} = 14 \frac{2}{7}

Example Question #1 : Fractions And Percentage

What percent of 0.6 is 0.0003?

Possible Answers:

0.02 %

2 %

0.5 %

0.002 %

0.05 %

Correct answer:

0.05 %

Explanation:

Let \displaystyle P be the percent. Then

\displaystyle P = \frac{ 0.0003}{0.6} \cdot100 = 0.05

Example Question #5 : Fractions And Percentage

What is \displaystyle 1 \frac{1}{4} % of \displaystyle 1 \frac{1}{4} ?

Possible Answers:

\displaystyle 1\frac{9}{16}

\displaystyle 15\frac{5}{8}

\displaystyle \frac{1}{6,400}

\displaystyle \frac{1}{64}

\displaystyle \frac{1}{640}

Correct answer:

\displaystyle \frac{1}{64}

Explanation:

Set up the proportion statement:

\displaystyle \frac{N}{1\frac{1}{4}} = \frac{1\frac{1}{4}}{100}

Cross-multply and solve for \displaystyle N:

\displaystyle 100 N=1 {\frac{1}{4}} \cdot 1{\frac{1}{4}} = {\frac{5}{4}} \cdot {\frac{5}{4}}

\displaystyle 100 N= {\frac{25}{16}}

\displaystyle \frac{1}{100} \cdot 100 N=\frac{1}{100} \cdot {\frac{25}{16}}

\displaystyle N =\frac{1}{100} \cdot {\frac{25}{16}}= \frac{1}{4} \cdot {\frac{1}{16}}= \frac{1}{64}

Example Question #7 : How To Find Fractional Percentages

What is \displaystyle \frac{1}{4} % of \displaystyle \frac{1}{4} ?

Possible Answers:

\displaystyle \frac{1}{1,600}

\displaystyle 16

\displaystyle 1,600

\displaystyle \frac{1}{16}

\displaystyle 1

Correct answer:

\displaystyle \frac{1}{1,600}

Explanation:

Set up the proportion statement:

\displaystyle \frac{N}{\frac{1}{4}} = \frac{\frac{1}{4}}{100}

Cross-multply and solve for \displaystyle N:

\displaystyle 100 N= {\frac{1}{4}} \cdot {\frac{1}{4}}

\displaystyle 100 N= {\frac{1}{16}}

\displaystyle \frac{1}{100} \cdot 100 N=\frac{1}{100} \cdot {\frac{1}{16}}

\displaystyle N = \frac{1}{1,600}

Example Question #1 : How To Find Fractional Percentages

What is \displaystyle \frac{2}{3}\% of \displaystyle \frac{2}{5}?

Possible Answers:

\displaystyle \frac{3}{500}

\displaystyle \frac{1}{600}

\displaystyle \frac{3}{5,000}

\displaystyle \frac{2}{75}

\displaystyle \frac{1}{375}

Correct answer:

\displaystyle \frac{1}{375}

Explanation:

Set up a proportion:

\displaystyle \frac{\frac{2}{3}}{100} = \frac{N}{\frac{2}{5}}

Cross-multiply and solve for \displaystyle N:

\displaystyle N \cdot 100 = \frac{2}{3} \cdot \frac{2}{5}

\displaystyle N \cdot 100 = \frac{4}{15}

\displaystyle N \cdot 100 \cdot \frac{1}{100} = \frac{4}{15} \cdot \frac{1}{100}

\displaystyle N = \frac{4}{1,500} = \frac{1}{375}

Example Question #2 : Fractions And Percentage

What is \displaystyle \small \small \frac{3}{5}\% of \displaystyle 450?

Possible Answers:

\displaystyle \small 270

\displaystyle \small 1.33

\displaystyle \small 750

\displaystyle \small 27

\displaystyle \small 2.7

Correct answer:

\displaystyle \small 2.7

Explanation:

There are a few ways we can approach this problem. We know that \displaystyle \small \frac{3}{5}\% is \displaystyle \small \frac{\frac{3}{5}}{100 }, or \displaystyle \small \frac{3}{5}*\frac{1}{100}.

We also know that for percentages, "of" means multiply, so we can set up a multiplication problem: 

\displaystyle \small \small \frac{3}{5}*\frac{1}{100}*450

Simplifying gives

\displaystyle \small \small \frac{1350}{500}=2.7.

Example Question #3043 : Algebra 1

What is \displaystyle \frac{1}{2}\% of \displaystyle 300,000?

Possible Answers:

\displaystyle 2500

\displaystyle 1500

\displaystyle 15000

\displaystyle 5000

\displaystyle 75000

Correct answer:

\displaystyle 1500

Explanation:

Remember that the word "of" means multiply. One way to solve this is to first divide the percentage by 100.

\displaystyle \frac{\frac{1}{2}}{100}

This is the division of two fractions and can be done by multiplying the first fraction by the reciprocal of the second fraction. Remember to treat \displaystyle 100 as the fraction \displaystyle \frac{100}{1}

The multiplication should look like this

\displaystyle \frac{1}{2}\cdot \frac{1}{100}

Now multiply across the numerator and denominator

\displaystyle \frac{1}{200}

Now that the fractional percentage has been converted to a regular fraction we can multiply this by the \displaystyle 300,000 to get the answer

\displaystyle \frac{1}{200}\cdot \frac{300000}{1}

\displaystyle \frac{300000}{200}

\displaystyle 1500

Learning Tools by Varsity Tutors