Algebra II : Inverse Functions

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Inverse Functions

\displaystyle f(x)=\frac{x+3}{x-2}

Which of the following represents \displaystyle f^{-1}(x)?

Possible Answers:

\displaystyle f^{-1}(x)=\frac{x-1}{2x+3}

\displaystyle f^{-1}(x)=\left( \frac{x+3}{x-2} \right)^{-1}

\displaystyle f^{-1}(x)=\frac{2x+3}{x-1}

\displaystyle f^{-1}(x)=\frac{x-2}{x+3}

Correct answer:

\displaystyle f^{-1}(x)=\frac{2x+3}{x-1}

Explanation:

The question is asking for the inverse function. To find the inverse, first switch input and output -- which is usually easiest if you use \displaystyle y notation instead of \displaystyle f(x). Then, solve for \displaystyle y.

\displaystyle f(x)=\frac{x+3}{x-2}

\displaystyle y=\frac{x+3}{x-2}

Here's where we switch:

\displaystyle x=\frac{y+3}{y-2}

To solve for \displaystyle y, we first have to get it out of the denominator. We do that by multiplying both sides by \displaystyle (y-2).

\displaystyle x(y-2)=y+3

Distribute:

\displaystyle xy-2x=y+3

Get all the \displaystyle y terms on the same side of the equation:

\displaystyle xy-y=2x+3

Factor out a \displaystyle y:

\displaystyle y(x-1)=2x+3

Divide by \displaystyle (x-1):

\displaystyle y=\frac{2x+3}{x-1}

This is our inverse function!

\displaystyle f^{-1}(x)=\frac{2x+3}{x-1}

Example Question #191 : Introduction To Functions

What is the inverse of the following function?

\displaystyle f(x)=(x-4)^3+3

Possible Answers:

\displaystyle f^{-1}(x)=\frac{1}{(x-4)^3+4}

\displaystyle f^{-1}(x)=x+1

\displaystyle f^{-1}(x)=\sqrt[3]{x-4}+3

\displaystyle f^{-1}(x)=\sqrt[3]{x-3}+4

\displaystyle f^{-1}(x)=(x+4)^3-3

Correct answer:

\displaystyle f^{-1}(x)=\sqrt[3]{x-3}+4

Explanation:

Let's say that the function \displaystyle f(x) takes the input \displaystyle a and yields the output \displaystyle b. In math terms:

\displaystyle f(a)=b

So, the inverse function needs to take the input \displaystyle b and yield the output \displaystyle a:

\displaystyle f^{-1}(b)=a

So, to answer this question, we need to flip the inputs and outputs for \displaystyle f(x). We do this by replacing \displaystyle x with \displaystyle f(x) (or a dummy variable; I used \displaystyle y) and \displaystyle f(x) with \displaystyle x. Then we solve for \displaystyle y to get our inverse function:

\displaystyle x=(y-4)^3+3

Now we solve for \displaystyle y by subtracting \displaystyle 3 from both sides, taking the cube root, and then adding \displaystyle 4:

\displaystyle y=\sqrt[3]{x-3}+4

\displaystyle y is our inverse function, \displaystyle f^{-1}(x)

Example Question #1 : Inverse Functions

\displaystyle g^{-1}(2)=6

 \displaystyle g(3)=4 

\displaystyle f^{-1}(-2)=4

\displaystyle f(3)=6

\displaystyle f^{-1}(9)=2

What is \displaystyle f\circ g\circ f^{-1}(6) ?

Possible Answers:

\displaystyle 4

\displaystyle 6

\displaystyle 2

\displaystyle -2

\displaystyle 9

Correct answer:

\displaystyle -2

Explanation:

The question is essentially asking this: take \displaystyle f^{-1}(6) say that equals \displaystyle a, then take \displaystyle g(a), then whatever that equals, say \displaystyle b, take \displaystyle f(b). So, we start with \displaystyle f^{-1}(6); we know that \displaystyle f(3)=6, so if we flip that around we know \displaystyle f^{-1}(6)=3. Now we have to take \displaystyle g(3), but we know that is \displaystyle 4. Now we have to take \displaystyle f(4), but we don't have that in our table; we do have \displaystyle f^{-1}(-2)=4, though, and if we flip it around, we get \displaystyle f(4)=-2, which is our answer. 

Example Question #2 : Inverse Functions

\displaystyle g^{-1}(2)=6

 \displaystyle g(3)=4 

\displaystyle f^{-1}(-2)=4

\displaystyle f(3)=6

\displaystyle f^{-1}(9)=2

What is \displaystyle g\circ f\circ g^{-1}(4) ?

Possible Answers:

\displaystyle 4

\displaystyle 6

\displaystyle -2

\displaystyle 2

\displaystyle 3

Correct answer:

\displaystyle 2

Explanation:

Our question is asking "What is \displaystyle g of \displaystyle f of \displaystyle g inverse?" First we find the \displaystyle g inverse of \displaystyle 4. Looking at the question, we see \displaystyle g(3)=4; if we flip that around, we get \displaystyle g^{-1}(4)=3. Now we need to find what \displaystyle f(3) is; that is an easy one, as it is directly provided: \displaystyle f(3)=6. Now we need to find \displaystyle g(6). Again, this isn't given, but what is given is \displaystyle g^{-1}(2)=6, so \displaystyle g(6)=2, and that is our answer. 

Example Question #4 : Inverse Functions

Over which line do you flip a function when finding its inverse?

Possible Answers:

\displaystyle y=-x

\displaystyle y=0

You do not flip a function over a line when finding its inverse.

\displaystyle y=x

\displaystyle x=0

Correct answer:

\displaystyle y=x

Explanation:

To find the inverse of a function, you need to change all of the \displaystyle y values to \displaystyle x values and all the \displaystyle x values to \displaystyle y values. If you flip a function over the line \displaystyle y=x, then you are changing all the \displaystyle x values to \displaystyle y values and all the \displaystyle y values to \displaystyle x values, giving you the inverse of your function. 

Example Question #5 : Inverse Functions

Find the inverse of this function: 

\displaystyle f(x)=e^{x^2-3}+\pi

Possible Answers:

\displaystyle ln(x^2-\pi+3)

\displaystyle \pm\sqrt{x-\pi}+ln(3)

\displaystyle (cos(x-\pi)+3)^2

\displaystyle \pm\sqrt{ln(x-\pi)+3}

\displaystyle \frac{1}{e^{x^2-3}+\pi}

Correct answer:

\displaystyle \pm\sqrt{ln(x-\pi)+3}

Explanation:

To find the inverse of a function, we need to switch all the inputs (\displaystyle x variables) for all the outputs (\displaystyle f(x) variables or \displaystyle y variables), so if we just switch all the \displaystyle x variables to \displaystyle y variables and all the \displaystyle f(x) variables to \displaystyle x variables and solve for \displaystyle y, then \displaystyle y will be our inverse function. 

\displaystyle f(x)=e^{x^2-3}+\pi

turns into the following once the variables are switched:

\displaystyle x=e^{y^2-3}+\pi

the first thing we do is subtract \displaystyle \pi from each side; then, we take the natural log of each side. This gives us

\displaystyle ln(x-\pi)=y^2-3

Then we just add three to each side and take the square root of each side, making sure we have both the positive and negative roots. 

\displaystyle \pm\sqrt{ln(x-\pi)+3}=y

This is the inverse function of the function with which we were provided.

Example Question #1 : Inverse Functions

Please find the inverse of the following function.

\displaystyle y=4x-9

Possible Answers:

\displaystyle y = \frac{x-9}{4}

\displaystyle y=\frac{x+9}{4}

\displaystyle y = 4x + 9

\displaystyle y = -4x + 9

\displaystyle x = \frac{y+9}{4}

Correct answer:

\displaystyle y=\frac{x+9}{4}

Explanation:

In order to find the inverse function, we must swap \displaystyle x and \displaystyle y and then solve for \displaystyle y.

\displaystyle y = 4x-9

Becomes

\displaystyle x=4y-9

Now we need to solve for \displaystyle y:

\displaystyle x+\underset{+9}{0}=4y-\underset{+9}{9}

Finally, we need to divide each side by 4.

\displaystyle \frac{x+9}{4}=\frac{4y}{4}

This gives us our inverse function:

\displaystyle y = \frac{x+9}{4}

Example Question #1 : Inverse Functions

Find the inverse of \displaystyle y=3x+3.

Possible Answers:

\displaystyle y=\frac{1}{3}x-3

\displaystyle y=\frac{1}{3}x-1

\displaystyle y=\frac{1}{3}x+3

\displaystyle y=\frac{1}{3}x+3

\displaystyle y=\frac{1}{3}x

Correct answer:

\displaystyle y=\frac{1}{3}x-1

Explanation:

To create the inverse, switch x and y making the solution   x=3y+3. 

y must be isolated to finish the problem.

Example Question #1 : Inverse Functions

\displaystyle f(x) = x^{3} -5

 

Which one of the following functions represents the inverse of \displaystyle f\left ( x \right )?

A)  \displaystyle x-5

B)  \displaystyle \sqrt[3]{x^{3}-5}

C)  \displaystyle \sqrt[3]{x+5}

D)  \displaystyle x^{3 } + 5

E)  \displaystyle x^{3} - 5

Possible Answers:

A)

E)

B)

D)

C)

Correct answer:

C)

Explanation:

Given \displaystyle y = x^{3} - 5

Hence \displaystyle x^{3}=y+5

Interchanging \displaystyle x with \displaystyle y we get:

\displaystyle y^{3}=x+5

Solving for \displaystyle y results in \displaystyle y=\sqrt[3]{x+5}.

Example Question #1 : Inverse Functions

What is the inverse of \displaystyle y=\frac{2}{5}x -3?

Possible Answers:

\displaystyle y=\frac{5}{2}x +3

\displaystyle y=-\frac{5}{2}x+\frac{15}{2}

\displaystyle y=\frac{5}{2}x+\frac{15}{2}

\displaystyle y=\frac{5}{2}x-\frac{15}{2}

\displaystyle y=\frac{5}{2}x+15

Correct answer:

\displaystyle y=\frac{5}{2}x+\frac{15}{2}

Explanation:

Interchange the \displaystyle x and \displaystyle y variables and solve for \displaystyle y.

\displaystyle x=\frac{2}{5}y -3

\displaystyle x+3=\frac{2}{5}y

\displaystyle 5x+15=2y

\displaystyle y=\frac{5}{2}x+\frac{15}{2}

Learning Tools by Varsity Tutors