Calculus 1 : How to find prediction models

Study concepts, example questions & explanations for Calculus 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : How To Find Prediction Models

Suppose you are a banker and set up a very unique function for your interest rate over time given by

\displaystyle y=sec(\pi x) 

 

However, you find your computer incapable of calculating the interest rate at \displaystyle x=2.01. Estimate the value of the interest rate at \displaystyle x=2.01 by using a linear approximation, using the slope of the function at \displaystyle x=2.

Possible Answers:

Undefined

\displaystyle 2

\displaystyle 0

\displaystyle 1

Correct answer:

\displaystyle 1

Explanation:

To do a linear approximation, we're going to create a function

\displaystyle y_1=mz+b, that approximates our situation. In our case, m will be the slope of the function \displaystyle sec(\pi x) at \displaystyle x=2, while b will be the value of the function \displaystyle sec(\pi x) at \displaystyle x=2. The z will be distance from our starting position \displaystyle (x=2) to our end position \displaystyle (x=2.01), which is \displaystyle 0.01

Firstly, we need to find the derivative of \displaystyle sec(\pi x) with respect to x to determine slope.

By the power rule: 

\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} (cos(\pi x))^{-1}= -(cos(\pi x))^{-2}*-\pi sin(\pi x)=(cos(\pi x))^{-2}*\pi sin(\pi x)

The slope at \displaystyle x=2 will therefore be 0 since \displaystyle sin(2\pi)=0.

Since this is the case, the approximate value of our interest rate will be identical to the value of the original function at x=2, which is \displaystyle sec(2\pi)=1

\displaystyle y_1=0*0.01+1=1

1 is our final answer. 

Example Question #2 : How To Find Prediction Models

Approximate the value at \displaystyle x=0.02 of the function \displaystyle y=3e^{-x}+sec(x),with a linear approximation using the slope of the function at \displaystyle x=0

Possible Answers:

\displaystyle 0

\displaystyle 3.94

\displaystyle -3.94

\displaystyle -1

Correct answer:

\displaystyle 3.94

Explanation:

To do this, we must determine the slope of the function at \displaystyle x=0, which we will call \displaystyle m, and the initial value of the function at \displaystyle x=0, which we will call \displaystyle b, and since \displaystyle x=0.02 is only \displaystyle .02 away from \displaystyle x=0, our linear approximation will look like:

\displaystyle y=m(.02)+b

 

To determine slope, we take the derivative of the function with respect to x and find its value at \displaystyle x=0, which in our case is:

\displaystyle \frac{\mathrm{d} }{\mathrm{d} x}[3e^{-x}+sec(x)]= -3e^{-x}-sec(x)*tan(x).

At \displaystyle x=0, our value for \displaystyle m is \displaystyle -3

To determine \displaystyle b, we need to determine the value of the original equation at \displaystyle x=0

\displaystyle y=3e^{-x}+sec(x)

At \displaystyle x=0, our value for b is \displaystyle 4 

Since \displaystyle y=m(.02)+b\displaystyle y=3.94

Example Question #3 : How To Find Prediction Models

Determine the tangent line to \displaystyle y=3e^{-x} at  \displaystyle x=ln(e^{-2}), and use the tangent line to approximate the value at \displaystyle x=ln(e^3).

Possible Answers:

\displaystyle -12e^2

\displaystyle -6e^2

\displaystyle e^2

\displaystyle 12e^2

Correct answer:

\displaystyle -12e^2

Explanation:

First recall that

\displaystyle ln(e^{-2})=-2

To find the tangent line of \displaystyle y=3e^{-x} at \displaystyle x=-2, we first determine the slope of \displaystyle y=3e^{-x}. To do so, we must find its derivative. 

Recall that derivatives of exponential functions involving \displaystyle e are given as:

\displaystyle \frac{\mathrm{d} }{\mathrm{d} x}Ae^{g(x)}= A*g'(x)e^{g(x)}, where \displaystyle A is a constant and \displaystyle g(x) is any function of \displaystyle x

In our case, \displaystyle A=3, g(x)=-x, g'(x)=-1,. 

\displaystyle \frac{d}{dx}3e^{-x}= -3e^{-x}

At \displaystyle x=-2,

 , where \displaystyle m is the slope of the tangent line.

To use point-slope form, we need to know the value of the original function at \displaystyle x=-2

\displaystyle y=3e^{-x}

\displaystyle y(-2)=3e^{-(-2)}=3e^2

Therefore,

\displaystyle (y_{appx}-3e^2)=-3e^2(x+2)

At \displaystyle x=ln(e^3)=3

\displaystyle (y_{appx}-3e^2)=-3e^2(3+2)

\displaystyle y_{appx}=-15e^2+3e^2=-12e^2

Learning Tools by Varsity Tutors