Calculus 2 : Vector

Study concepts, example questions & explanations for Calculus 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Vectors & Spaces

Express \displaystyle -i-k in vector form.

Possible Answers:

\displaystyle \left \langle -1,1,-1\right \rangle

\displaystyle \left \langle -1,-1,0\right \rangle

\displaystyle \left \langle -1,0,-1\right \rangle

\displaystyle \left \langle 0,-1,-1\right \rangle

\displaystyle \left \langle -1,-1\right \rangle

Correct answer:

\displaystyle \left \langle -1,0,-1\right \rangle

Explanation:

The correct form of x,y, and z of a vector is represented in the order of i, j, and k, respectively. The coefficients of i,j, and k are used to write the vector form.

\displaystyle -i-k = -1i+0j-1k = \left \langle -1,0,-1\right \rangle

Example Question #1 : Vectors

Express \displaystyle -10j in vector form.

Possible Answers:

\displaystyle \left \langle -10,-10,-10\right \rangle

\displaystyle \left \langle -10,0,0\right \rangle

\displaystyle \left \langle 1,-10,1\right \rangle

\displaystyle \left \langle 0,-10,0\right \rangle

\displaystyle \left \langle 0,0,-10\right \rangle

Correct answer:

\displaystyle \left \langle 0,-10,0\right \rangle

Explanation:

The x,y, and z of a vector is represented in the order of i, j, and k, respectively. Use the coefficients of i,j, and k to write the vector form.

\displaystyle -10j=0i-10j+0k = \left \langle 0,-10,0\right \rangle

Example Question #1 : Vectors

Find the vector form of \displaystyle (6,3,1) to \displaystyle (0,1,3).

Possible Answers:

\displaystyle \overrightarrow{v}=[6,-2,-2]

\displaystyle \overrightarrow{v}=[6,2,2]

\displaystyle \overrightarrow{v}=[6,2,-2]

\displaystyle \overrightarrow{v}=[6,2,-3]

\displaystyle \overrightarrow{v}=[-6,-2,-2]

Correct answer:

\displaystyle \overrightarrow{v}=[6,2,-2]

Explanation:

When we are trying to find the vector form we need to remember the formula which states to take the difference between the ending and starting point.

Thus we would get:

Given \displaystyle (a,b,c) and \displaystyle (d,e,f) 

\displaystyle \overrightarrow{v}=[d-a, e-b, f-c]

In our case we have ending point at \displaystyle (6,3,1) and our starting point at \displaystyle (0,1,3).

Therefore we would set up the following and simplify.

\displaystyle \overrightarrow{v}=[6-0,3-1,1-3]=[6,2,-2] 

 

Example Question #2 : Vector Form

Find the dot product of the 2 vectors.  \displaystyle \left \langle a,2a\right \rangle \cdot \left \langle a,a\right \rangle

Possible Answers:

\displaystyle 3a^2

\displaystyle \left \langle a^2,2a^2\right \rangle

\displaystyle \left \langle 3a^2,3a^2\right \rangle

\displaystyle \left \langle a,2a\right \rangle

\displaystyle 5a

Correct answer:

\displaystyle 3a^2

Explanation:

The dot product will give a single value answer, and not a vector as a result.

To find the dot product, use the following formula:

\displaystyle \left \langle x_1,x_2\right \rangle \cdot \left \langle y_1,y_2\right \rangle=(x_1)(y_1)+(x_2)(y_2)

\displaystyle \left \langle a,2a\right \rangle \cdot \left \langle a,a\right \rangle = (a)(a)+(2a)(a)=a^2+2a^2=3a^2

Example Question #1 : Vector Form

Assume that Billy fired himself out of a circus cannon at a velocity of \displaystyle 25 \:mph at an elevation angle of \displaystyle 25 degrees.  Write this in vector component form.

Possible Answers:

\displaystyle \left \langle 50,50\right \rangle

\displaystyle \left \langle23.097, 9.567 \right \rangle

\displaystyle \left \langle22.658,10.565 \right \rangle

\displaystyle \left \langle 24.78,-3.309\right \rangle

\displaystyle \left \langle 25.25,25.25\right \rangle

Correct answer:

\displaystyle \left \langle22.658,10.565 \right \rangle

Explanation:

The firing of the cannon has both x and y components.  

Write the formula that distinguishes the x and y direction and substitute. 

\displaystyle \left \langle x,y\right \rangle= \left \langle vcos(\theta),vsin(\theta)\right \rangle

Ensure that the calculator is in degree mode before you solve.

\displaystyle \left \langle 25cos25,25sin25\right \rangle = \left \langle22.658,10.565 \right \rangle

Example Question #1 : Vector Form

Compute:  \displaystyle 2\vec{a}-6\vec{b} given the following vectors.  \displaystyle \vec{a}= \left \langle 1,3\right \rangle and \displaystyle \vec{b}= \left \langle 1\right \rangle.

Possible Answers:

The answer does not exist.

\displaystyle \left \langle -4,0\right \rangle

\displaystyle {}\left< \sqrt{13} \right \rangle

\displaystyle \left \langle 1,2\right \rangle

\displaystyle \left \langle -4,3\right \rangle

Correct answer:

The answer does not exist.

Explanation:

The dimensions of the vectors are mismatched.  

Since vector \displaystyle \vec{a} does not have the same dimensions as \displaystyle \vec{b}, the answer for \displaystyle 2\vec{a}-6\vec{b} cannot be solved.

Example Question #1 : Vector Form

What is the vector form of \displaystyle 2i-10k?

Possible Answers:

\displaystyle \left \langle -10,2,0\right \rangle

\displaystyle \left \langle 2,-10,0\right \rangle

\displaystyle \left \langle 2,0,-10\right \rangle

Correct answer:

\displaystyle \left \langle 2,0,-10\right \rangle

Explanation:

To find the vector form of \displaystyle 2i-10k, we must map the coefficients of \displaystyle i\displaystyle j, and \displaystyle k to their corresponding \displaystyle x\displaystyle y, and \displaystyle z coordinates. Thus, \displaystyle 2i-10k becomes \displaystyle \left \langle 2,0,-10\right \rangle.

Example Question #1 : Vector Form

Express \displaystyle -2i+7j-10k in vector form.

Possible Answers:

\displaystyle \left \langle 2,7,-10\right \rangle

\displaystyle \left \langle -2,-7,-10\right \rangle

\displaystyle \left \langle 2,7,10\right \rangle

\displaystyle \left \langle -2,7,-10\right \rangle

\displaystyle \left \langle 2,-7,10\right \rangle

Correct answer:

\displaystyle \left \langle -2,7,-10\right \rangle

Explanation:

In order to express \displaystyle -2i+7j-10k in vector form, we must use the coefficients of \displaystyle i, j,and \displaystyle k to represent the \displaystyle x-, \displaystyle y-, and \displaystyle z-coordinates of the vector.

Therefore, its vector form is 

\displaystyle \left \langle -2,7,-10\right \rangle.

Example Question #1 : Vector Form

Express \displaystyle i+5k in vector form.

Possible Answers:

\displaystyle \left \langle -1,5\right \rangle

\displaystyle \left \langle -1,-5\right \rangle

\displaystyle \left \langle -1,0,5\right \rangle

\displaystyle \left \langle 1,5\right \rangle

\displaystyle \left \langle 1,0,5\right \rangle

Correct answer:

\displaystyle \left \langle 1,0,5\right \rangle

Explanation:

In order to express \displaystyle i+5k in vector form, we must use the coefficients of \displaystyle i, j,and \displaystyle k to represent the \displaystyle x-, \displaystyle y-, and \displaystyle z-coordinates of the vector.

Therefore, its vector form is 

\displaystyle \left \langle 1,0,5\right \rangle.

Example Question #1 : Vector Form

Express \displaystyle -j+7k in vector form.

Possible Answers:

\displaystyle \left \langle -1,0,7\right \rangle

None of the above

\displaystyle \left \langle-1,7\right \rangle

\displaystyle \left \langle 0,-1,7\right \rangle

\displaystyle \left \langle -1,7,0\right \rangle

Correct answer:

\displaystyle \left \langle 0,-1,7\right \rangle

Explanation:

In order to express \displaystyle -j+7k in vector form, we will need to map its \displaystyle i\displaystyle j, and \displaystyle k coefficients to its \displaystyle x-, \displaystyle y-, and \displaystyle z-coordinates.

Thus, its vector form is 

\displaystyle \left \langle 0,-1,7\right \rangle

Learning Tools by Varsity Tutors