Calculus AB : Differentiate Inverse Trig Functions

Study concepts, example questions & explanations for Calculus AB

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Differentiate Inverse Trig Functions

Evaluate the following derivative: \displaystyle \frac{d}{dx}(2sec^{-1}x)

Possible Answers:

\displaystyle \frac{2}{x \sqrt{x^2-1}}

\displaystyle \frac{2}{|x| \sqrt{x^2+1}}

\displaystyle \frac{2}{|x| \sqrt{x^2-1}}

\displaystyle \frac{1}{\sqrt{x^2-1}}

Correct answer:

\displaystyle \frac{2}{|x| \sqrt{x^2-1}}

Explanation:

\displaystyle \frac{d}{dx}(sec^{-1}x) = \frac{1}{|x| \sqrt{x^2-1}}

The \displaystyle 2 in the original expression is a constant and can be multiplied to the identity written above. 

When dealing with the derivative of \displaystyle sec^{-1}x, it is important to keep the standalone \displaystyle x in the denominator in absolute value bars and to make sure there is a \displaystyle -1 under the radical.

Example Question #2 : Differentiate Inverse Trig Functions

Let \displaystyle f(x)=cot^{-1}(4x). Evaluate \displaystyle f'(2).

Possible Answers:

\displaystyle \frac{4}{65}

\displaystyle -\frac{4}{65}

\displaystyle -\frac{1}{65}

\displaystyle \frac{1}{65}

Correct answer:

\displaystyle -\frac{4}{65}

Explanation:

\displaystyle f(x)=cot^{-1}(4x)

First, take the derivative of the function

\displaystyle f'(x)= -\frac{4}{1+(4x)^2}= -\frac{4}{1+16x^2}

Especially when given inverse trigonometry derivative questions, be on the lookout for multiple functions embedded in the same problem. For example, in this problem there is both an outer function (\displaystyle cot^{-1}) and an inner function (\displaystyle 4x). Because there is more than one function, chain rule must be applied; thus, the derivative of the inner function must be multiplied to the derivative of the outer function. 

To reach the final answer, \displaystyle f'(x)must be evaluated at \displaystyle x=2.

\displaystyle f'(2)= -\frac{4}{1+16(2)^2}= -\frac{4}{65}

Example Question #2 : Differentiate Inverse Trig Functions

Evaluate the following derivative: \displaystyle \frac{d}{dx}(sin^{-1}(3x^2))

Possible Answers:

\displaystyle \frac{x}{\sqrt{1-9x^4}}

\displaystyle \frac{1}{\sqrt{1-3x^2}}

\displaystyle \frac{6x}{\sqrt{1-9x^4}}

\displaystyle \frac{6x}{\sqrt{1-9x^2}}

Correct answer:

\displaystyle \frac{6x}{\sqrt{1-9x^4}}

Explanation:

\displaystyle \frac{d}{dx}(sin^{-1}(3x^2))=(\frac{1}{(\sqrt{1-3x^2)^2}})(6x)

This problem requires chain rule; there is an outer function (\displaystyle sin^{-1}) and an inner function (\displaystyle 3x^2).

To simplify it further, square the \displaystyle 3x^2 and multiply the \displaystyle 6x.

\displaystyle \frac{d}{dx}(sin^{-1}(3x^2))=(\frac{1}{(\sqrt{1-3x^2)^2}})(6x) = \frac{6x}{\sqrt{1-9x^4}}

Example Question #1 : Differentiate Inverse Trig Functions

Evaluate the following derivative: \displaystyle \frac{d}{dx}(6cos^{-1}(2x))

Possible Answers:

\displaystyle \frac{12}{\sqrt{1-4x^2}}

\displaystyle \frac{-12}{\sqrt{1-2x^2}}

\displaystyle \frac{-12}{\sqrt{1-x^2}}

\displaystyle \frac{-12}{\sqrt{1-4x^2}}

Correct answer:

\displaystyle \frac{-12}{\sqrt{1-4x^2}}

Explanation:

\displaystyle \frac{d}{dx}(6cos^{-1}(2x))=(6)(2)(-\frac{1}{\sqrt{1-(2x)^2}})

This problem requires chain rule, because there is an outer and inner function.

The outer function is \displaystyle cos^{-1} and the inner is \displaystyle 2x

To fully simplify the expression, multiply the constants and square the \displaystyle 2x term. 

\displaystyle \frac{d}{dx}(6cos^{-1}(2x))=(6)(2)(-\frac{1}{\sqrt{1-(2x)^2}}) = \frac{-12}{\sqrt{1-4x^2}}

Example Question #3 : Differentiate Inverse Trig Functions

Let \displaystyle f(x)=(2x)tan^{-1}(x). What is \displaystyle f'(x)?

Possible Answers:

\displaystyle f'(x)=2tan^{-1}(x)

\displaystyle f'(x)=tan^{-1}(x)+\frac{2x}{1+x^2}

\displaystyle f'(x)=tan^{-1}(x)+\frac{2}{1+x^2}

\displaystyle f'(x)=tan^{-1}(x)+\frac{x}{1+x^2}

Correct answer:

\displaystyle f'(x)=tan^{-1}(x)+\frac{2x}{1+x^2}

Explanation:

\displaystyle f(x)=(2x)tan^{-1}(x)

This is an example of when product rule must be used to find the derivative, because there are two functions (\displaystyle 2x and \displaystyle tan^{-1}(x)) being multiplied together within \displaystyle f(x).

\displaystyle f'(x) =(2)tan^{-1}(x)+2x(\frac{1}{1+x^2}) =2tan^{-1}(x)+\frac{2x}{1+x^2}

Example Question #3 : Differentiate Inverse Trig Functions

Evaluate the following derivative: \displaystyle \frac{d}{dx}(csc^{-1}(10x))

Chain rule must be used to properly find the derivative, because there is an outer function of \displaystyle csc^{-1} and an inner function of \displaystyle 10x present.

\displaystyle \frac{d}{dx}(csc^{-1}(10x))=(10)(-\frac{1}{|10x| \sqrt{(10x)}^2-1})=\frac{-10}{|10x| \sqrt{100x^2-1}}

To simplify further, the 10 in the numerator cancels out the 10 in the denominator. 

\displaystyle \frac{d}{dx}(csc^{-1}(10x))=\frac{-10}{|10x| \sqrt{100x^2-1}}=\frac{-1}{|x| \sqrt{100x^2-1}}

 

Possible Answers:

\displaystyle \frac{1}{|x| \sqrt{100x^2-1}}

\displaystyle \frac{-10}{|x| \sqrt{x^2-1}}

\displaystyle \frac{-1}{|x| \sqrt{100x^2-1}}

\displaystyle \frac{-1}{|10x| \sqrt{100x^2-1}}

Correct answer:

\displaystyle \frac{-1}{|10x| \sqrt{100x^2-1}}

Explanation:

\displaystyle \frac{d}{dx}(csc^{-1}(10x))

 

Example Question #1 : Differentiate Inverse Trig Functions

Which derivative would produce the same expression as \displaystyle \frac{d}{dx}(-sec^{-1}(5x))?

Possible Answers:

\displaystyle \frac{d}{dx}(csc^{-1}(5x))

\displaystyle \frac{d}{dx}(cot^{-1}(5x))

\displaystyle \frac{d}{dx}(-tan^{-1}(5x))

\displaystyle \frac{d}{dx}(sec^{-1}(5x))

Correct answer:

\displaystyle \frac{d}{dx}(csc^{-1}(5x))

Explanation:

By examining the inverse trigonometric function derivatives, it can be shown that \displaystyle \frac{d}{dx}(csc^{-1}x)=\frac{d}{dx}(-sec^{-1}x). The derivatives of these two inverse functions are negatives of one another.

Example Question #3 : Differentiate Inverse Trig Functions

Let \displaystyle f(x)=(sin^{-1}x)^3. Find \displaystyle f'(x).

Possible Answers:

\displaystyle \frac{3(sin^{-1}x)^2}{\sqrt{1-x^2}}

\displaystyle \frac{3(cos^{-1}x)^2}{\sqrt{1-x^2}}

\displaystyle \frac{cos^{-1}x}{\sqrt{1-x^2}}

\displaystyle \frac{3(sin^{-1}x)}{\sqrt{1-x^2}}

Correct answer:

\displaystyle \frac{3(sin^{-1}x)^2}{\sqrt{1-x^2}}

Explanation:

\displaystyle f(x)=(sin^{-1}x)^3

\displaystyle f'(x)=3(sin^{-1}x)^2*(\frac{1}{\sqrt{1-x^2}})=\frac{3(sin^{-1}x)^2}{\sqrt{1-x^2}}

This question invokes the use of chain rule.

Example Question #1 : Differentiate Inverse Trig Functions

Let \displaystyle f(x)=cos^{-1}(\sqrt{3x-1}). Find \displaystyle f'(x).

Possible Answers:

\displaystyle \frac{3}{2(\sqrt{3x-1})(\sqrt{2-3x})}

\displaystyle \frac{-3}{2(\sqrt{3x-1})(\sqrt{2-3x})}

\displaystyle \frac{1}{(\sqrt{2-3x})}

\displaystyle \frac{-3 sin ^{-1}x}{2(\sqrt{2-3x})}

Correct answer:

\displaystyle \frac{-3}{2(\sqrt{3x-1})(\sqrt{2-3x})}

Explanation:

\displaystyle f(x)=cos^{-1}(\sqrt{3x-1})

This question requires the use of chain rule. In this case, there are three functions to consider: first, \displaystyle cos^{-1}; second, the square root; and third, \displaystyle 3x-1. In order to evaluate, the derivative of each of the three functions must be found and multiplied together.

\displaystyle f'(x)=\frac{-1}{\sqrt{1-(\sqrt{3x-1})^2}}*(\frac{1}{2})*(3x-1)^{-\frac{1}{2}}*3=\frac{-3}{2(\sqrt{3x-1})(\sqrt{1-3x+1})}=\frac{-3}{2(\sqrt{3x-1})(\sqrt{2-3x})}

Example Question #1 : Differentiate Inverse Trig Functions

Evaluate the following derivative:\displaystyle \frac{d}{dx}(tan^{-1}(e^{2x}))

Possible Answers:

\displaystyle \frac{2e^{2x}}{1+e^{2x}}

\displaystyle \frac{e^{2x}}{1+e^{2x}}

\displaystyle \frac{2e^{2x}}{1+e^{4x}}

\displaystyle \frac{2}{1+e^{4x}}

Correct answer:

\displaystyle \frac{2e^{2x}}{1+e^{4x}}

Explanation:

This problem requires use of the chain rule twice; the first time addresses the inner function of \displaystyle e^{2x} while the second accounts for the function \displaystyle 2x

\displaystyle \frac{d}{dx}(tan^{-1}(e^{2x}))=\frac{1}{1+(e^{2x})^2}*e^{2x}*2=\frac{2e^{2x}}{1+e^{4x}}

Learning Tools by Varsity Tutors