Common Core: 5th Grade Math : Solve Word Problems Involving Division of Whole Numbers Leading to Answers in the Form of Fractions or Mixed Numbers: CCSS.Math.Content.5.NF.B.3

Study concepts, example questions & explanations for Common Core: 5th Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #22 : Number & Operations With Fractions

If you bake 374 cookies for your class of 50 people, how many cookies does each student get?

Possible Answers:

Between 10 and 11 cookies

Between 6 and 7 cookies

Between 7 and 8 cookies

Between 8 and 9 cookies

Between 9 and 10 cookies

Correct answer:

Between 7 and 8 cookies

Explanation:

 

 

 

Example Question #1 : Solve Word Problems Involving Division Of Whole Numbers Leading To Answers In The Form Of Fractions Or Mixed Numbers: Ccss.Math.Content.5.Nf.B.3

\(\displaystyle \small 4\) people are sharing a \(\displaystyle \small 23\) pound bag of peanuts. How much will each person get? Select the answer with the pair of numbers that the answer will be between. 

Possible Answers:

\(\displaystyle \small 6\) and \(\displaystyle \small 7\)

\(\displaystyle \small 4\) and \(\displaystyle \small 5\)

\(\displaystyle \small 2\) and \(\displaystyle \small 3\)

\(\displaystyle \small 3\) and \(\displaystyle \small 4\)

\(\displaystyle 5\) and \(\displaystyle \small 6\)

Correct answer:

\(\displaystyle 5\) and \(\displaystyle \small 6\)

Explanation:

We can think of this problem as an improper fraction and solve for the mixed number. 

\(\displaystyle \small \frac{23}{4}=5\frac{3}4{}\)

\(\displaystyle \small 4\) can go into \(\displaystyle \small 23\) only \(\displaystyle \small 5\) times with \(\displaystyle \small \frac{3}{4}\) left over. 

Example Question #2 : Solve Word Problems Involving Division Of Whole Numbers Leading To Answers In The Form Of Fractions Or Mixed Numbers: Ccss.Math.Content.5.Nf.B.3

\(\displaystyle \small 6\) people are sharing a \(\displaystyle \small \small 37\)  pound bag of peanuts. How much will each person get? Select the answer with the pair of numbers that the answer will be between. 

Possible Answers:

\(\displaystyle \small 7\) and \(\displaystyle \small 8\)

\(\displaystyle \small 8\) and \(\displaystyle \small 9\)

\(\displaystyle \small 6\) and \(\displaystyle \small 7\)

\(\displaystyle \small 5\) and \(\displaystyle \small 6\)

\(\displaystyle \small 4\) and \(\displaystyle \small 5\)

Correct answer:

\(\displaystyle \small 6\) and \(\displaystyle \small 7\)

Explanation:

We can think of this problem as an improper fraction and solve for the mixed number. 

\(\displaystyle \small \frac{37}{6}=6\frac{1}{6}\)

\(\displaystyle \small 6\) can go into \(\displaystyle \small 37\) only \(\displaystyle \small 6\) times with \(\displaystyle \small \frac{1}{6}\) left  over. 

Example Question #2 : Solve Word Problems Involving Division Of Whole Numbers Leading To Answers In The Form Of Fractions Or Mixed Numbers: Ccss.Math.Content.5.Nf.B.3

\(\displaystyle \small 5\) people are sharing a \(\displaystyle \small 43\) pound bag of peanuts. How much will each person get? Select the answer with the pair of numbers that the answer will be between. 

Possible Answers:

\(\displaystyle \small 12\) and \(\displaystyle \small 13\)

\(\displaystyle \small 10\) and \(\displaystyle \small 11\)

\(\displaystyle \small 11\) and \(\displaystyle \small 12\)

\(\displaystyle \small 8\) and \(\displaystyle \small 9\)

\(\displaystyle \small 9\) and \(\displaystyle 10\)

Correct answer:

\(\displaystyle \small 8\) and \(\displaystyle \small 9\)

Explanation:

We can think of this problem as an improper fraction and solve for the mixed number. 

\(\displaystyle \small \frac{43}{5}=8\frac{3}{5}\)

\(\displaystyle \small 5\) can go into \(\displaystyle \small 43\) only \(\displaystyle \small 8\) times with \(\displaystyle \small \frac{3}{5}\) left over. 

 

Example Question #3 : Solve Word Problems Involving Division Of Whole Numbers Leading To Answers In The Form Of Fractions Or Mixed Numbers: Ccss.Math.Content.5.Nf.B.3

\(\displaystyle \small 9\) people are sharing a \(\displaystyle \small 82\) pound bag of peanuts. How much will each person get? Select the answer with the pair of numbers that the answer will be between. 

Possible Answers:

\(\displaystyle \small 6\) and \(\displaystyle \small 7\)

\(\displaystyle \small 8\) and \(\displaystyle \small 9\)

\(\displaystyle \small 7\) and \(\displaystyle \small 8\)

\(\displaystyle \small 10\) and \(\displaystyle \small 11\)

\(\displaystyle \small 9\) and \(\displaystyle \small 10\)

Correct answer:

\(\displaystyle \small 9\) and \(\displaystyle \small 10\)

Explanation:

We can think of this problem as an improper fraction and solve for the mixed number. 

\(\displaystyle \small \frac{82}{9}=9\frac{1}{9}\)

\(\displaystyle \small 9\) and go into \(\displaystyle \small 82\) only \(\displaystyle \small 9\) times and \(\displaystyle \small \frac{1}{9}\) will be left over. 

Example Question #2 : Solve Word Problems Involving Division Of Whole Numbers Leading To Answers In The Form Of Fractions Or Mixed Numbers: Ccss.Math.Content.5.Nf.B.3

\(\displaystyle \small 8\) people are sharing a \(\displaystyle \small 42\) pound bag of peanuts. How much will each person get? Select the answer with the pair of numbers that the answer will be between. 

Possible Answers:

\(\displaystyle \small 7\) and \(\displaystyle \small 8\)

\(\displaystyle \small 6\) and \(\displaystyle \small 7\)

\(\displaystyle \small 9\) and \(\displaystyle \small 10\)

\(\displaystyle \small 5\) and \(\displaystyle \small 6\)

\(\displaystyle \small 8\) and \(\displaystyle \small 9\)

Correct answer:

\(\displaystyle \small 5\) and \(\displaystyle \small 6\)

Explanation:

We can think of this problem as an improper fraction and solve for the mixed number. 

\(\displaystyle \small \frac{42}{8}=5\frac{2}{8}\)

\(\displaystyle \small 8\) can go into \(\displaystyle \small 42\) only \(\displaystyle \small 5\) times with \(\displaystyle \small \frac{2}{8}\) left over. 

Example Question #3 : Solve Word Problems Involving Division Of Whole Numbers Leading To Answers In The Form Of Fractions Or Mixed Numbers: Ccss.Math.Content.5.Nf.B.3

\(\displaystyle \small 3\) people are sharing a \(\displaystyle \small 34\) pound bag of peanuts. How much will each person get? Select the answer with the pair of numbers that the answer will be between. 

Possible Answers:

\(\displaystyle \small 9\) and \(\displaystyle \small 10\)

\(\displaystyle \small 11\) and \(\displaystyle \small 12\)

\(\displaystyle \small 12\) and \(\displaystyle \small 13\)

\(\displaystyle \small 8\) and \(\displaystyle \small 9\)

\(\displaystyle \small 10\) and \(\displaystyle \small 11\)

Correct answer:

\(\displaystyle \small 11\) and \(\displaystyle \small 12\)

Explanation:

We can think of this problem as an improper fraction and solve for the mixed number. 

\(\displaystyle \small \frac{34}{3}=11\frac{1}{3}\)

\(\displaystyle \small 3\) can go into \(\displaystyle \small 34\) only \(\displaystyle \small 11\) times with \(\displaystyle \small \frac{1}{3}\) left over. 

 

Example Question #3 : Solve Word Problems Involving Division Of Whole Numbers Leading To Answers In The Form Of Fractions Or Mixed Numbers: Ccss.Math.Content.5.Nf.B.3

\(\displaystyle \small 4\) people are sharing a \(\displaystyle \small 39\) pound bag of peanuts. How much will each person get? Select the answer with the pair of numbers that the answer will be between. 

Possible Answers:

\(\displaystyle \small 8\) and \(\displaystyle \small 9\)

\(\displaystyle \small 11\) and \(\displaystyle \small 12\)

\(\displaystyle \small 7\) and \(\displaystyle \small 8\)

\(\displaystyle \small 9\) and \(\displaystyle \small 10\)

\(\displaystyle \small 10\) and \(\displaystyle \small 11\)

Correct answer:

\(\displaystyle \small 9\) and \(\displaystyle \small 10\)

Explanation:

We can think of this problem as an improper fraction and solve for the mixed number. 

\(\displaystyle \small \frac{39}{4}=9\frac{3}{4}\)

\(\displaystyle \small 4\) can go into \(\displaystyle \small 39\) only \(\displaystyle \small 9\) times with \(\displaystyle \small \frac{3}{4}\) left over. 

Example Question #4 : Solve Word Problems Involving Division Of Whole Numbers Leading To Answers In The Form Of Fractions Or Mixed Numbers: Ccss.Math.Content.5.Nf.B.3

\(\displaystyle \small 5\) people are sharing a \(\displaystyle \small 72\) pound bag of peanuts. How much will each person get? Select the answer with the pair of numbers that the answer will be between. 

Possible Answers:

\(\displaystyle \small 13\) and \(\displaystyle \small 14\)

\(\displaystyle \small 10\) and \(\displaystyle \small 11\)

\(\displaystyle \small 12\) and \(\displaystyle \small 13\)

\(\displaystyle \small 14\) and \(\displaystyle \small 15\)

\(\displaystyle \small 11\) and \(\displaystyle \small 12\)

Correct answer:

\(\displaystyle \small 14\) and \(\displaystyle \small 15\)

Explanation:

We can think of this problem as an improper fraction and solve for the mixed number. 

\(\displaystyle \small \frac{72}{5}=14\frac{2}{5}\)

\(\displaystyle \small 5\) cand go into \(\displaystyle \small 72\) only \(\displaystyle \small 14\) times with \(\displaystyle \small \frac{2}{5}\) left over.

Example Question #36 : Number & Operations With Fractions

\(\displaystyle \small 7\) people are sharing a \(\displaystyle \small 40\) pound bag of peanuts. How much will each person get? Select the answer with the pair of numbers that the answer will be between. 

Possible Answers:

\(\displaystyle \small 6\) and \(\displaystyle \small 7\)

\(\displaystyle \small 5\) and \(\displaystyle \small 6\)

\(\displaystyle \small 7\) and \(\displaystyle \small 8\)

\(\displaystyle \small 4\) and \(\displaystyle \small 5\)

\(\displaystyle \small 3\) and \(\displaystyle \small 4\)

Correct answer:

\(\displaystyle \small 5\) and \(\displaystyle \small 6\)

Explanation:

We can think of this problem as an improper fraction and solve for the mixed number. 

\(\displaystyle \small \frac{40}{7}=5\frac{5}{7}\)

\(\displaystyle \small 7\) can be divided into \(\displaystyle \small 40\) only \(\displaystyle \small 5\) times, with \(\displaystyle \small \frac{5}{7}\) left over. 

Learning Tools by Varsity Tutors