GMAT Math : Understanding functions

Study concepts, example questions & explanations for GMAT Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Understanding Functions

There is water tank already \frac{4}{7}\displaystyle \frac{4}{7} full. If Jose adds 5 gallons of water to the water tank, the tank will be \frac{13}{14}\displaystyle \frac{13}{14} full. How many gallons of water would the water tank hold if it were full?

Possible Answers:

5\displaystyle 5

14\displaystyle 14

20\displaystyle 20

25\displaystyle 25

15\displaystyle 15

Correct answer:

14\displaystyle 14

Explanation:

In this case, we need to solve for the volume of the water tank, so we set the full volume of the water tank as x\displaystyle x. According to the question, \frac{4}{7}\displaystyle \frac{4}{7}-full  can be replaced as \frac{4}{7}x\displaystyle \frac{4}{7}x\frac{13}{14}\displaystyle \frac{13}{14}-full  would be \frac{13}{14}x\displaystyle \frac{13}{14}x. Therefore, we can write out the equation as: 

\frac{4}{7}x+5=\frac{13}{14}x\displaystyle \frac{4}{7}x+5=\frac{13}{14}x.

Then we can solve the equation and find the answer is 14 gallons.

 

Example Question #2 : Understanding Functions

There exists a set \displaystyle X = {1, 2, 3, 4}.  Which of the following defines a function of \displaystyle X?

Possible Answers:

\displaystyle f=\left \{ (2,3),(1,4),(2,1),(3,2),(4,4) \right \}

none are functions

two are functions

\displaystyle h=\left \{ (2,1),(3,4),(1,4),(2,1),(4,4) \right \}

\displaystyle g=\left \{ (3,1),(4,2),(1,1) \right \}

Correct answer:

\displaystyle h=\left \{ (2,1),(3,4),(1,4),(2,1),(4,4) \right \}

Explanation:

Let's look at \displaystyle f,g,and\ h and see if any of them are functions.

1. \displaystyle f = {(2, 3), (1, 4), (2, 1), (3, 2), (4, 4)}: This cannot be a function of \displaystyle X because two of the ordered pairs, (2, 3) and (2, 1) have the same number (2) as the first coordinate.

2. \displaystyle g = {(3, 1), (4, 2), (1, 1)}: This cannot be a function of \displaystyle X because it contains no ordered pair with first coordinate 2.  Because the set \displaystyle X = {1, 2, 3, 4}, we need an ordered pair of the form (2,  ) .

3. \displaystyle h = {(2, 1), (3, 4), (1, 4), (2, 1), (4, 4)}: This is a function.  Even though two of the ordered pairs have the same number (2) as the first coordinate, \displaystyle h is still a function of \displaystyle X because (2, 1) is simply repeated twice, so the two ordered pairs with first coordinate 2 are equal.

Example Question #2 : Functions/Series

Let \displaystyle f be a function that assigns x^{2}\displaystyle x^{2} to each real number \displaystyle x.  Which of the following is NOT an appropriate way to define \displaystyle f?

Possible Answers:

f(x)=x^{2}\displaystyle f(x)=x^{2}

f(y)=x^{2}\displaystyle f(y)=x^{2}

\displaystyle x\rightarrow x^{2}

all are appropriate ways to define \displaystyle f

y=x^{2}\displaystyle y=x^{2}

Correct answer:

f(y)=x^{2}\displaystyle f(y)=x^{2}

Explanation:

This is a definition question.  The only choice that does not equal the others is f(y)=x^{2}\displaystyle f(y)=x^{2}.  This describes a function that assigns x^{2}\displaystyle x^{2} to some number \displaystyle y, instead of assigning x^{2}\displaystyle x^{2} to its own square root, \displaystyle x.

Example Question #142 : Algebra

If f(x)=x^{2}\displaystyle f(x)=x^{2}, find \frac{f(x+h)-f(x)}{h}\displaystyle \frac{f(x+h)-f(x)}{h}.

Possible Answers:

x^{2}+2xh+h^{2}\displaystyle x^{2}+2xh+h^{2}

\displaystyle 2x+h

x^{2}\displaystyle x^{2}

\displaystyle 0

x^{2}+4x+4\displaystyle x^{2}+4x+4

Correct answer:

\displaystyle 2x+h

Explanation:

We are given f(x) and h, so the only missing piece is f(x + h).

f(x+h)=(x+h)^{2}=x^{2}+2xh+h^{2}\displaystyle f(x+h)=(x+h)^{2}=x^{2}+2xh+h^{2}

Then \frac{f(x+h)-f(x)}{h}= \frac{x^{2}+2xh+h^{2}-x^{2}}{h} = \frac{2xh+h^{2}}{h}=2x+h\displaystyle \frac{f(x+h)-f(x)}{h}= \frac{x^{2}+2xh+h^{2}-x^{2}}{h} = \frac{2xh+h^{2}}{h}=2x+h

Example Question #3 : Functions/Series

Give the range of the function:

\displaystyle f (x) = \left\{\begin{matrix} 2x - 1 & & x < -2\\ -3x& & -2\leq x\leq 2\ \\5 & & \; x > 2 \end{matrix}\right.

Possible Answers:

\displaystyle (-\infty , 6]

\displaystyle [-6, \infty )

\displaystyle [-5, \infty)

\displaystyle (-\infty , -6] \cup [-5, 6]

\displaystyle (-\infty , 5]

Correct answer:

\displaystyle (-\infty , 6]

Explanation:

We look at the range of the function on each of the three parts of the domain. The overall range is the union of these three intervals.

On \displaystyle (-\infty , -2)\displaystyle f (x) takes the values:

\displaystyle x < -2

\displaystyle 2x - 1 < 2 (-2) - 1

\displaystyle 2x - 1 < -5

\displaystyle f\left (x \right )< -5

or \displaystyle (-\infty , -5)

 

On \displaystyle [-2, 2]\displaystyle f (x) takes the values:

\displaystyle -2 \leq x\leq 2

\displaystyle -3(-2) \geq -3x\geq -3 (2)

\displaystyle 6 \geq -3x\geq -6

\displaystyle -6 \leq f(x)\leq 6,

or \displaystyle [-6, 6]

 

On \displaystyle (2, \infty)\displaystyle f (x) takes only value 5.

The range of \displaystyle f (x) is therefore \displaystyle (-\infty , -5) \cup [-6, 6] \cup \left \{ 5\right \} , which simplifies to \displaystyle (-\infty , 6].

Example Question #4 : Understanding Functions

A sequence begins as follows:

\displaystyle 8, 12, ...

It is formed the same way that the Fibonacci sequence is formed. What are the next two numbers in the sequence?

Possible Answers:

\displaystyle 20, 35

\displaystyle 18, 27

\displaystyle 16, 20

\displaystyle 8, 4

\displaystyle 20, 32

Correct answer:

\displaystyle 20, 32

Explanation:

Each term of the Fibonacci sequence is formed by adding the previous two terms. Therefore, do the same to form this sequence:

\displaystyle 8 + 12= 20

\displaystyle 12+20=32

Example Question #3 : Functions/Series

Give the inverse of \displaystyle f (x) = 5x - 7

Possible Answers:

\displaystyle f^{-1}(x)=- \frac{1}{5}x + \frac{7}{5}

\displaystyle f^{-1}(x)= \frac{1}{5}x +7

\displaystyle f^{-1}(x)= \frac{1}{5}x + \frac{7}{5}

\displaystyle f^{-1}(x)= -\frac{1}{5}x +7

\displaystyle f^{-1}(x)= \frac{1}{5}x - \frac{7}{5}

Correct answer:

\displaystyle f^{-1}(x)= \frac{1}{5}x + \frac{7}{5}

Explanation:

The easiest way to find the inverse of \displaystyle f (x) is to replace \displaystyle f (x) in the definition with \displaystyle y , switch \displaystyle y with \displaystyle x, and solve for \displaystyle y in the new equation.

\displaystyle y = 5x - 7

\displaystyle x = 5y - 7

\displaystyle x + 7 = 5y - 7 + 7

\displaystyle x + 7 = 5y

\displaystyle \frac{1}{5} \cdot\left ( x + 7 \right ) = \frac{1}{5} \cdot 5y

\displaystyle \frac{1}{5} x + \frac{7}{5} = y

\displaystyle f^{-1}(x)= \frac{1}{5}x + \frac{7}{5}

Example Question #4 : Functions/Series

Define \displaystyle f (x) = x^{3} - 8. Give \displaystyle f^{-1} (x)

Possible Answers:

\displaystyle f^{-1}(x) = 2+ \sqrt[3]{x }

\displaystyle f^{-1}(x) = \sqrt[3]{x +2}

\displaystyle f^{-1}(x) = \sqrt[3]{x +8}

\displaystyle f^{-1}(x) = 8+ \sqrt[3]{x }

\displaystyle f^{-1}(x) = 2- \sqrt[3]{x }

Correct answer:

\displaystyle f^{-1}(x) = \sqrt[3]{x +8}

Explanation:

The easiest way to find the inverse of \displaystyle f (x) is to replace \displaystyle f (x) in the definition with \displaystyle y , switch \displaystyle y with \displaystyle x, and solve for \displaystyle y in the new equation.

\displaystyle y = x^{3} - 8

\displaystyle x= y^{3} - 8

\displaystyle x +8= y^{3} - 8 +8

\displaystyle x +8= y^{3}

\displaystyle \sqrt[3]{x +8}= \sqrt[3]{y^{3}}

\displaystyle y = \sqrt[3]{x +8}

Example Question #5 : Functions/Series

Define \displaystyle f(x) = x^{2}- 4 and \displaystyle g(x) = x^{2} + 4.

Give the definition of \displaystyle (f \circ g)(x) .

Possible Answers:

\displaystyle (f \circ g)(x) = x^{4}+8x^{2}+12

\displaystyle (f \circ g)(x) = x^{4}+8x^{2}-12

\displaystyle (f \circ g)(x) = x^{4} -16

\displaystyle (f \circ g)(x) = x^{4} - 8x^{2} +20

\displaystyle (f \circ g)(x) = x^{4}

Correct answer:

\displaystyle (f \circ g)(x) = x^{4}+8x^{2}+12

Explanation:

\displaystyle (f \circ g)(x) = f(g(x))

\displaystyle = f(x^{2}+4)

\displaystyle = (x^{2}+4)^{2}-4

\displaystyle =x^{4} + 8x^{2}+16-4

\displaystyle =x^{4} + 8x^{2}+12

Example Question #1 : Functions/Series

Define \displaystyle g (x) = 5x - 2 .

If \displaystyle g (A) = 11, evaluate \displaystyle A.

Possible Answers:

\displaystyle A=57

\displaystyle A=1.8

\displaystyle A=53

\displaystyle A=2.6

\displaystyle A=4.2

Correct answer:

\displaystyle A=2.6

Explanation:

Solve for \displaystyle A in this equation:

\displaystyle g (A) = 5A - 2 = 11

\displaystyle 5A - 2 + 2 = 11+ 2

\displaystyle 5A = 13

\displaystyle 5A \div 5 = 13\div 5

\displaystyle A = 2.6

Tired of practice problems?

Try live online GMAT prep today.

1-on-1 Tutoring
Live Online Class
1-on-1 + Class
Learning Tools by Varsity Tutors