High School Math : Calculus II — Integrals

Study concepts, example questions & explanations for High School Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Calculus Ii — Integrals

Function

 

The above graph depicts a function \displaystyle h(x). Does \displaystyle \lim_{x\rightarrow 1} h(x) exist, and why or why not?

Possible Answers:

\displaystyle \lim_{x\rightarrow 1} h(x) does not exist because \displaystyle f (1 ) \neq \lim_{x\rightarrow 1^{+}} h(x)

\displaystyle \lim_{x\rightarrow 1} h(x) exists because \displaystyle f (1 ) = \frac{\lim_{x\rightarrow 1^{-}} h(x) + \lim_{x\rightarrow 1^{+ }} h(x)}{2}

\displaystyle \lim_{x\rightarrow 1} h(x) does not exist because \displaystyle f (1 ) \neq \lim_{x\rightarrow 1^{-}} h(x)

\displaystyle \lim_{x\rightarrow 1} h(x) does not exist because \displaystyle \lim_{x\rightarrow 1^{-}} h(x) \neq \lim_{x\rightarrow 1^{+}} h(x).

\displaystyle \lim_{x\rightarrow 1} h(x) exists because \displaystyle \lim_{x\rightarrow 1^{-}} | h(x)| = \lim_{x\rightarrow 1^{+}} |h(x)|

Correct answer:

\displaystyle \lim_{x\rightarrow 1} h(x) does not exist because \displaystyle \lim_{x\rightarrow 1^{-}} h(x) \neq \lim_{x\rightarrow 1^{+}} h(x).

Explanation:

\displaystyle \lim_{x\rightarrow 1} h(x) exists if and only if \displaystyle \lim_{x\rightarrow 1^{-}} h(x) = \lim_{x\rightarrow 1^{+}} h(x). As can be seen from the diagram, \displaystyle \lim_{x\rightarrow 1^{-}} h(x) = 1, but \displaystyle \lim_{x\rightarrow 1^{+}} h(x) = -1. Since \displaystyle \lim_{x\rightarrow 1^{-}} h(x) \neq \lim_{x\rightarrow 1^{+}} h(x),   \displaystyle \lim_{x\rightarrow 1} h(x) does not exist.

Example Question #2 : Calculus Ii — Integrals

Function

The above graph depicts a function \displaystyle f(x). Does \displaystyle \lim_{x\rightarrow 1} f(x) exist, and why or why not?

Possible Answers:

\displaystyle \lim_{x\rightarrow 1} f(x) does not exist because \displaystyle f(1) \neq \lim_{x\rightarrow 1^{+}} f(x)

\displaystyle \lim_{x\rightarrow 1} f(x) does not exist because \displaystyle f is not continuaous at \displaystyle x = 1.

\displaystyle \lim_{x\rightarrow 1} f(x) does not exist because \displaystyle \lim_{x\rightarrow 1^{+}} f(x) \neq \lim_{x\rightarrow 1^{-}} f(x)

\displaystyle \lim_{x\rightarrow 1} f(x) does not exist because \displaystyle f(1) \neq \lim_{x\rightarrow 1^{-}} f(x)

\displaystyle \lim_{x\rightarrow 1} f(x) exists because \displaystyle \lim_{x\rightarrow 1^{+}} f(x) = \lim_{x\rightarrow 1^{-}} f(x)

Correct answer:

\displaystyle \lim_{x\rightarrow 1} f(x) exists because \displaystyle \lim_{x\rightarrow 1^{+}} f(x) = \lim_{x\rightarrow 1^{-}} f(x)

Explanation:

\displaystyle \lim_{x\rightarrow 1} f(x) exists if and only if \displaystyle \lim_{x\rightarrow 1^{+}} f(x) = \lim_{x\rightarrow 1^{-}} f(x);

the actual value of \displaystyle f(1) is irrelevant, as is whether \displaystyle f is continuous there.

As can be seen,

\displaystyle \lim_{x\rightarrow 1^{+}} f(x) = 1 and \displaystyle \lim_{x\rightarrow 1^{-}} f(x) = 1;

therefore, \displaystyle \lim_{x\rightarrow 1^{+}} f(x) = \lim_{x\rightarrow 1^{-}} f(x),

and \displaystyle \lim_{x\rightarrow 1} f(x) exists.

Example Question #1 : Calculus Ii — Integrals

A function is defined by the following piecewise equation:

\displaystyle f(x)=\left\{\begin{matrix} x^{2}+4x-3, x< 3\\10x-12, x\geq 3 \end{matrix}\right.

At \displaystyle x=3, the function is:

Possible Answers:

discontinuous

continuous

Correct answer:

continuous

Explanation:

The first step to determine continuity at a point is to determine if the function is defined at that point. When we substitute in 3 for \displaystyle x, we get 18 as our \displaystyle y-value. \displaystyle x=3 is thus defined for this function.

The next step is determine if the limit of the function is defined at that point. This means that the left-hand limit must be equal to the right-hand limit at \displaystyle x=3. Substitution reveals the following:

\displaystyle \lim_{x\rightarrow 3^{-}}f(x)=(3)^{2}+4(3)-3=9+12-3=18

\displaystyle \lim_{x\rightarrow 3^{+}}f(x)=10(3)-12=18

Both sides of the function, therefore, approach a \displaystyle y-value of 18.

 

Finally, we must ensure that the curve is smooth by checking the limit of the derivative of both sides.

\displaystyle \lim_{x\rightarrow 3^{-}}f^{'}(x)=2(3)+4=10

\displaystyle \lim_{x\rightarrow 3^{+}}f^{'}(x)=10

 

Since the function passes all three tests, it is continuous.

Example Question #1 : Calculus Ii — Integrals

Function

The graph depicts a function \displaystyle g(x). Does \displaystyle \lim_{x\rightarrow 1} g(x) exist?

Possible Answers:

\displaystyle \lim_{x\rightarrow 1} g(x) exists because \displaystyle \lim_{x\rightarrow 1^{-}} g(x) = \lim_{x\rightarrow 1^{+}} g(x).

\displaystyle \lim_{x\rightarrow 1} g(x) does not exist because \displaystyle g(1) is undefined.

\displaystyle \lim_{x\rightarrow 1} g(x) does not exist because \displaystyle g is not continuous at \displaystyle x = 1.

\displaystyle \lim_{x\rightarrow 1} g(x) exists because \displaystyle g(x) is constant on \displaystyle (-\infty , 1).

\displaystyle \lim_{x\rightarrow 1} g(x) does not exist because \displaystyle \lim_{x\rightarrow 1^{-}} g(x) \neq \lim_{x\rightarrow 1^{+}} g(x).

Correct answer:

\displaystyle \lim_{x\rightarrow 1} g(x) exists because \displaystyle \lim_{x\rightarrow 1^{-}} g(x) = \lim_{x\rightarrow 1^{+}} g(x).

Explanation:

\displaystyle \lim_{x\rightarrow 1}g(x) exists if and only if \displaystyle \lim_{x\rightarrow 1^{+}} g(x) = \lim_{x\rightarrow 1^{-}} g(x); the actual value of \displaystyle f(1) is irrelevant.

As can be seen, \displaystyle \lim_{x\rightarrow 1^{+}} g(x) = 1 and \displaystyle \lim_{x\rightarrow 1^{-}}g(x) = 1; therefore, \displaystyle \lim_{x\rightarrow 1^{+}} g(x) = \lim_{x\rightarrow 1^{-}} g(x), and \displaystyle \lim_{x\rightarrow 1} g(x)  exists.

Example Question #1 : Calculus Ii — Integrals

The polar coordinates of a point are \displaystyle \left(2.1, \frac{7\pi }{3}\right ). Give its \displaystyle y-coordinate in the rectangular coordinate system (nearest hundredth).

Possible Answers:

\displaystyle -1.05

\displaystyle 1.82

\displaystyle -1.82

\displaystyle 1.05

\displaystyle 4.20

Correct answer:

\displaystyle 1.82

Explanation:

Given the polar coordinates \displaystyle (r,\theta ), the  \displaystyle y-coordinate is  \displaystyle y= r \sin \theta.  We can find this coordinate by substituting \displaystyle r = 2.1, \theta = \frac{7\pi }{3}:

\displaystyle y = r \sin \theta = 2.1 \cdot \sin \frac{7\pi }{3} \approx 2.1 \cdot 0.8660 \approx 1.82

Example Question #2 : Calculus Ii — Integrals

The polar coordinates of a point are \displaystyle \left(2.1, \frac{7\pi }{3}\right ). Give its \displaystyle x-coordinate in the rectangular coordinate system (nearest hundredth).

Possible Answers:

\displaystyle -1.05

\displaystyle 1.05

\displaystyle -1.82

\displaystyle 4.20

\displaystyle 1.82

Correct answer:

\displaystyle 1.05

Explanation:

Given the polar coordinates \displaystyle (r,\theta ), the  \displaystyle x-coordinate is  \displaystyle x= r \cos \theta. We can find this coordinate by substituting \displaystyle r = 2.1, \theta = \frac{7\pi }{3}:

\displaystyle x = r \cos \theta = 2.1 \cdot \cos \frac{7\pi }{3} = 2.1 \cdot 0.5 = 1.05

Example Question #2 : Calculus Ii — Integrals

The polar coordinates of a point are \displaystyle \left(1.2, \frac{2\pi }{5}\right ). Give its \displaystyle y-coordinate in the rectangular coordinate system (nearest hundredth).

Possible Answers:

\displaystyle 1.14

\displaystyle 3.88

\displaystyle 1.26

\displaystyle 0.37

\displaystyle 3.69

Correct answer:

\displaystyle 1.14

Explanation:

Given the polar coordinates \displaystyle (r,\theta ), the  \displaystyle y-coordinate is  \displaystyle y= r \sin \theta. We can find this coordinate by substituting \displaystyle r = 1.2, \theta = \frac{2\pi }{5}:

\displaystyle y = r \cos \theta = 1.2 \cdot \sin \frac{2\pi }{5} \approx 1.2 \cdot 0.9511 \approx 1.14

Example Question #5 : Calculus Ii — Integrals

The polar coordinates of a point are \displaystyle \left(1.2, \frac{2\pi }{5}\right ). Give its \displaystyle x-coordinate in the rectangular coordinate system (nearest hundredth).

Possible Answers:

\displaystyle 3.69

\displaystyle 0.37

\displaystyle 1.26

\displaystyle 1.14

\displaystyle 3.88

Correct answer:

\displaystyle 0.37

Explanation:

Given the polar coordinates \displaystyle (r,\theta ), the  \displaystyle x-coordinate is  \displaystyle x= r \cos \theta. We can find this coordinate by substituting \displaystyle r = 1.2, \theta = \frac{2\pi }{5}:

\displaystyle x = r \cos \theta = 1.2 \cdot \cos \frac{2\pi }{5} \approx 1.2 \cdot 0.3090 \approx 0.37

Example Question #3 : Calculus Ii — Integrals

Find the vector where its initial point is \displaystyle (-1,4) and its terminal point is \displaystyle (2,2).

Possible Answers:

\displaystyle < 3,-2>

\displaystyle < 1,6>

\displaystyle < 1,-2>

\displaystyle < 1,2>

Correct answer:

\displaystyle < 3,-2>

Explanation:

We need to subtract the \displaystyle x-coordinate and the \displaystyle y-coordinates to solve for a vector when given its initial and terminal coordinates:

 

Initial pt: \displaystyle (-1,4)

Terminal pt: \displaystyle (2,2)

Vector: \displaystyle < 2-(-1),2-4>

Vector: \displaystyle < 3,-2>

Example Question #1 : Parametric, Polar, And Vector

Find the vector where its initial point is \displaystyle (-1,-5) and its terminal point is \displaystyle (2,3).

Possible Answers:

\displaystyle \left \langle3,8\right \rangle

\displaystyle \left \langle1,2\right \rangle

\displaystyle \left \langle3,2\right \rangle

\displaystyle \left \langle1,8\right \rangle

Correct answer:

\displaystyle \left \langle3,8\right \rangle

Explanation:

 

We need to subtract the \displaystyle x-coordinate and the \displaystyle y-coordinate to solve for a vector when given its initial and terminal coordinates:

 

Initial pt: \displaystyle (-1,-5)

Terminal pt: \displaystyle (2,3)

Vector: \displaystyle \left \langle 2-(-1),3-(-5)\right \rangle

Vector: \displaystyle \left \langle3,8\right \rangle

Learning Tools by Varsity Tutors