High School Math : Simplifying Radicals

Study concepts, example questions & explanations for High School Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Simplifying Radicals

Factor and simplify the following radical expression:

\displaystyle \sqrt[4]{81x^6y^5z^{10}}

Possible Answers:

\displaystyle 3xyz^2\sqrt[4]{x^2yz^2}

\displaystyle 3xy^2z^2\sqrt[4]{x^2yz^2}

\displaystyle 3xyz\sqrt[4]{x^2yz^2}

\displaystyle 3x^2yz^2\sqrt[4]{x^2yz^2}

\displaystyle 3xyz^2\sqrt[4]{x^2y^2z^2}

Correct answer:

\displaystyle 3xyz^2\sqrt[4]{x^2yz^2}

Explanation:

Begin by factoring the integer:

\displaystyle \sqrt[4]{81x^6y^5z^{10}}

\displaystyle \sqrt[4]{3^4x^6y^5z^{10}}

\displaystyle 3\sqrt[4]{x^6y^5z^{10}}

Now, simplify the exponents:

\displaystyle 3\sqrt[4]{x^4x^2y^4yz^{4}z^4z^2}

\displaystyle 3xyzz\sqrt[4]{x^2yz^2}

\displaystyle 3xyz^2\sqrt[4]{x^2yz^2}

Example Question #1 : Factoring Radicals

Factor and simplify the following radical expression:

\displaystyle \sqrt[3]{(3n-2)^3}

Possible Answers:

\displaystyle 3n-2

\displaystyle n-2

\displaystyle (3n-2)^2

\displaystyle (3n-2)^3

\displaystyle 3n+2

Correct answer:

\displaystyle 3n-2

Explanation:

Begin by converting the radical into exponent form:

\displaystyle \sqrt[3]{(3n-2)^3}

\displaystyle (3n-2)^3^{(\frac{1}{3})}

Now, multiply the exponents:

\displaystyle 3n-2

Example Question #2 : Factoring Radicals

Factor and simplify the following radical expression:

\displaystyle \sqrt[4]{18a^3bc^5}\cdot \sqrt[4]{27a^2b^6c}

Possible Answers:

\displaystyle 3a^2bc\sqrt[4]{6ab^3c^2}

\displaystyle 3abc\sqrt[4]{6ab^3c^2}

\displaystyle 3ab^2c\sqrt[4]{6ab^3c^2}

\displaystyle 3abc^2\sqrt[4]{6ab^3c^2}

\displaystyle 3abc\sqrt[4]{6a^2b^3c^2}

Correct answer:

\displaystyle 3abc\sqrt[4]{6ab^3c^2}

Explanation:

Begin by converting the radical into exponent form:

\displaystyle \sqrt[4]{18a^3bc^5}\cdot \sqrt[4]{27a^2b^6c}

\displaystyle (18a^3bc^5)^{\frac{1}{4}}\cdot ({27a^2b^6c})^{\frac{1}{4}}

Now, combine the bases:

\displaystyle (486a^5b^7c^6)^{\frac{1}{4}}

Simplify the integer:

\displaystyle (2\cdot 3\cdot 3^4a^5b^7c^6)^{\frac{1}{4}}

Now, simplify the exponents:

\displaystyle (2\cdot 3\cdot 3^4aa^4b^3b^4c^2c^4)^{\frac{1}{4}}

 

Convert back into radical form and simplify:

\displaystyle \sqrt[4]{2\cdot 3\cdot 3^4aa^4b^3b^4c^2c^4}

\displaystyle 3abc\sqrt[4]{2\cdot 3ab^3c^2}

\displaystyle 3abc\sqrt[4]{6ab^3c^2}

Example Question #1 : Factoring Radicals

Factor and simplify the following radical expression:

\displaystyle \frac{3-2\sqrt{3}}{2\sqrt{3}+3}

Possible Answers:

\displaystyle 5\sqrt{3}-7

\displaystyle 4\sqrt{3}-7

\displaystyle 3\sqrt{3}-7

\displaystyle 6\sqrt{3}-7

\displaystyle 2\sqrt{3}-7

Correct answer:

\displaystyle 4\sqrt{3}-7

Explanation:

Begin by multiplying the numerator and denominator by the complement of the denominator:

\displaystyle \frac{3-2\sqrt{3}}{2\sqrt{3}+3} \cdot \frac{2\sqrt{3}-3}{2\sqrt{3}-3}

Use the FOIL method to multiply the radicals. F (first) O (outer) I (inner) L (last)

\displaystyle \frac{6\sqrt{3}-9-12+6\sqrt{3}}{12-6\sqrt{3}+6\sqrt{3}-9}

Now, combine like terms:

\displaystyle \frac{12\sqrt{3}-21}{3}

Simplify:

\displaystyle 4\sqrt{3}-7

Example Question #5 : Simplifying Radicals

Factor and simplify the following radical expression:

\displaystyle \sqrt{\frac{1}{5}}-2\sqrt{20}+3\sqrt{5}

Possible Answers:

\displaystyle \frac{-4\sqrt{5}}{3}

\displaystyle \frac{-4\sqrt{3}}{3}

\displaystyle \frac{4\sqrt{5}}{3}

\displaystyle \frac{-4\sqrt{5}}{5}

\displaystyle \frac{-4\sqrt{3}}{5}

Correct answer:

\displaystyle \frac{-4\sqrt{5}}{5}

Explanation:

Begin by factoring the radicals:

\displaystyle \sqrt{\frac{1}{5}}-2\sqrt{20}+3\sqrt{5}

\displaystyle \sqrt{\frac{1}{5}}-4\sqrt{5}+3\sqrt{5}

Combine like terms:

\displaystyle \sqrt{\frac{1}{5}}-\sqrt{5}

Multiply the left side by \displaystyle \frac{\sqrt{5}}{\sqrt{5}} and the right side by \displaystyle \frac{5}{5}

\displaystyle \frac{1}{\sqrt{5}}-\sqrt{5}

\displaystyle \frac{1}{\sqrt{5}}\cdot \frac{\sqrt{5}}{\sqrt{5}}-\sqrt{5}\cdot\frac{5}{5}

 

\displaystyle \frac{\sqrt{5}}{5}-\frac{5\sqrt{5}}{5}

\displaystyle \frac{-4\sqrt{5}}{5}

Example Question #6 : Simplifying Radicals

Factor and simplify the following radical expression:

\displaystyle \sqrt[4]{24a^2b^3c^5}\cdot\sqrt[4]{48a^3b^3c^6}

Possible Answers:

\displaystyle 2abc\sqrt[4]{72ab^2c^3}

\displaystyle 2ab^2c^2\sqrt[4]{72ab^2c^3}

\displaystyle 2abc^2\sqrt[4]{72ab^2c^3}

\displaystyle 2a^2bc^2\sqrt[4]{72ab^2c^3}

\displaystyle 2abc^2\sqrt[4]{72a^2b^2c^3}

Correct answer:

\displaystyle 2abc^2\sqrt[4]{72ab^2c^3}

Explanation:

Begin by converting the radicals into exponent form:

\displaystyle \sqrt[4]{24a^2b^3c^5}\cdot\sqrt[4]{48a^3b^3c^6}

\displaystyle (24a^2b^3c^5)^{\frac{1}{4}}\cdot(48a^3b^3c^6)^{\frac{1}{4}}

\displaystyle (3\cdot 2^3a^2b^3c^5)^{\frac{1}{4}}\cdot(3\cdot 2^4a^3b^3c^6)^{\frac{1}{4}}

Now, combine the bases:

\displaystyle (3^2\cdot 2^7a^5b^6c^{11})^{\frac{1}{4}}

\displaystyle (3^2\cdot 2^7aa^4b^2b^4c^3c^{8})^{\frac{1}{4}}

Convert back into radical form and simplify:

\displaystyle \sqrt[4]{3^2\cdot 2^7aa^4b^2b^4c^3c^{8}}

\displaystyle 2abc^2\sqrt[4]{3^22^3ab^2c^3}

\displaystyle 2abc^2\sqrt[4]{72ab^2c^3}

Example Question #1 : Simplifying Radicals

Factor and simplify the following radical expression:

\displaystyle \sqrt{3mn}+\sqrt{27m^3n}

Possible Answers:

\displaystyle (1+2m)\sqrt{2mn}

\displaystyle (1+2m)\sqrt{3mn}

\displaystyle (1+m)\sqrt{3mn}

\displaystyle (1+3m)\sqrt{3mn}

\displaystyle (1+m)\sqrt{mn}

Correct answer:

\displaystyle (1+3m)\sqrt{3mn}

Explanation:

Begin by simplifying the right side of the rational expression:

\displaystyle \sqrt{3mn}+\sqrt{27m^3n}

\displaystyle \sqrt{3mn}+3m\sqrt{3mn}

\displaystyle 1\sqrt{3mn}+3m\sqrt{3mn}

 

Now, combine like terms:

\displaystyle (1+3m)\sqrt{3mn}

Example Question #21 : Radicals

Factor and simplify the following radical expression:

\displaystyle (4-\sqrt{3})(6-\sqrt{3})

Possible Answers:

\displaystyle 9-10\sqrt{3}

\displaystyle 27-10\sqrt{3}

\displaystyle 18-7\sqrt{3}

\displaystyle 18-10\sqrt{3}

\displaystyle 3-10\sqrt{3}

Correct answer:

\displaystyle 27-10\sqrt{3}

Explanation:

Begin by using the FOIL method to multiply the radical expression. F (first) O (outer) I (inner) L (last)

\displaystyle (4-\sqrt{3})(6-\sqrt{3})

\displaystyle 24-4\sqrt{3}-6\sqrt{3}+3

Now, combine like terms:

\displaystyle 27-10\sqrt{3}

Example Question #1 : Factoring Radicals

Factor and simplify the following radical expression:

\displaystyle \sqrt[3]{\frac{2}{5n}}

Possible Answers:

\displaystyle \frac{\sqrt[3]{50n^2}}{3n}

\displaystyle \frac{\sqrt[3]{30n^2}}{5n}

\displaystyle \frac{\sqrt[3]{50n^2}}{5n}

\displaystyle \frac{\sqrt[3]{30n^2}}{3n}

\displaystyle \frac{\sqrt[3]{40n^2}}{5n}

Correct answer:

\displaystyle \frac{\sqrt[3]{50n^2}}{5n}

Explanation:

Begin by multiplying the numerator and denominator by \displaystyle \frac{\sqrt[3]{(5n)^2}}{\sqrt[3]{(5n)^2}}:

\displaystyle \sqrt[3]{\frac{2}{5n}}

\displaystyle \frac{\sqrt[3]{2}}{\sqrt[3]{5n}}\cdot\displaystyle \frac{\sqrt[3]{(5n)^2}}{\sqrt[3]{(5n)^2}}

\displaystyle \frac{\sqrt[3]{50n^2}}{5n}

The expression cannot be further simplified.

Example Question #3 : Factoring Radicals

Factor and simplify the following radical expression:

\displaystyle \frac{2-\sqrt{2}}{4+2\sqrt{2}}

Possible Answers:

\displaystyle \frac{3-2\sqrt{2}}{3}

\displaystyle \frac{3-3\sqrt{2}}{2}

\displaystyle \frac{3-2\sqrt{2}}{2}

\displaystyle \frac{2-3\sqrt{2}}{2}

\displaystyle \frac{3-\sqrt{2}}{2}

Correct answer:

\displaystyle \frac{3-2\sqrt{2}}{2}

Explanation:

Begin by multiplying the numerator and denominator by the complement of the denominator:

\displaystyle \frac{2-\sqrt{2}}{4+2\sqrt{2}}

\displaystyle \frac{2-\sqrt{2}}{4+2\sqrt{2}} \cdot \frac{4-2\sqrt{2}}{4-2\sqrt{2}}

\displaystyle \frac{8-4\sqrt{2}-4\sqrt{2}+4}{16-8}

Combine like terms and simplify:

\displaystyle \frac{12-8\sqrt{2}}{8}

\displaystyle \frac{3-2\sqrt{2}}{2}

Learning Tools by Varsity Tutors