Precalculus : Trigonometric Applications

Study concepts, example questions & explanations for Precalculus

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Trigonometric Applications

In a right triangle, if the hypotenuse is \displaystyle 4 and a leg is \displaystyle 3, what is the area of the triangle? 

Possible Answers:

\displaystyle 12

\displaystyle \frac{3\sqrt7}{2}

\displaystyle 10

\displaystyle \frac{15}{2}

\displaystyle 3\sqrt{7}

Correct answer:

\displaystyle \frac{3\sqrt7}{2}

Explanation:

Use the Pythagorean Theorem to find the other leg.

\displaystyle {}a^2+b^2=c^2

\displaystyle a^2+3^2=4^2

\displaystyle a^2=7

\displaystyle a=\sqrt7

The length of the given leg is 3, and the unknown leg is \displaystyle \sqrt7.

Use the area of a triangle formula and solve.

\displaystyle A=\frac{bh}{2}= \frac{3\sqrt7}{2}

Example Question #1 : Trigonometric Applications

An isosceles right triangle has a hypotenuse of 1.  What is the area of this triangle?

Possible Answers:

\displaystyle 2

\displaystyle \frac{1}{4}

\displaystyle \frac{\sqrt2}{2}

\displaystyle \frac{1}{2}

\displaystyle \sqrt2

Correct answer:

\displaystyle \frac{1}{4}

Explanation:

Write the formula for the Pythagorean theorem.

\displaystyle a^2+b^2=c^2

In an isosceles right triangle, both legs of the right triangle are equal.  

\displaystyle a=b

Substitute the either variable and the known hypotheuse and determine the side length.

\displaystyle b^2+b^2 =1

\displaystyle 2b^2=1

\displaystyle b^2=\frac{1}{2}

\displaystyle b=\sqrt\frac{1}{2}

This length represents both the base and the height of the triangle. Write the area of a triangle and substitute to solve for the area.

\displaystyle A=\frac{bh}{2}=\frac{\sqrt\frac{1}{2}\sqrt\frac{1}{2}}{2}=\frac{\frac{1}{2}}{2}= \frac{1}{4}

 

Example Question #1 : Solving Right Triangles

Solve the right triangle.

Pcq1

C=90°

B=45°

a=5

c=\displaystyle \sqrt{50}

Possible Answers:

None of these answers are correct.

A=45°

b=5

A=135°

b=5

A=45°

b=\displaystyle \sqrt{50}

A=135°

b=2.07

Correct answer:

A=45°

b=5

Explanation:

Pcq1

Given that:

C=90°

B=45°

a=5

c=\displaystyle \sqrt{50}

 

\displaystyle a^{2}+b^{2}=c^{2}

Therefore...

\displaystyle 5^{2}+b^{2}=(\sqrt{50})^{2}

\displaystyle 25+b^{2}=50

\displaystyle b^{2}=50-25

\displaystyle b^{2}=25

\displaystyle \sqrt{b^{2}} =\sqrt{25}

\displaystyle b=5

 

All angles of a triangle add up to 180°.

\displaystyle A+45^{\circ}+90^{\circ}=180^{\circ}

\displaystyle A+135^{\circ}=180^{\circ}

\displaystyle A=180^{\circ}-135^{\circ}

\displaystyle A=45^{\circ}

Example Question #4 : Solve A Right Triangle

A right triangle has a base of 10 and a hypotenuse of 20.  What is the length of the other leg?

Possible Answers:

\displaystyle 10\sqrt2

\displaystyle 5\sqrt3

\displaystyle 10\sqrt3

\displaystyle 10

\displaystyle 15\sqrt2

Correct answer:

\displaystyle 10\sqrt3

Explanation:

Write the Pythagorean Theorem.

\displaystyle a^2+b^2=c^2

Substitute the values of the leg and hypotenuse.  The hypotenuse is the longest side of the right triangle.  Solve for the unknown variable.

\displaystyle a^2+10^2 = 20^2

\displaystyle a^2 = 20^2-10^2

\displaystyle a^2 = 300

\displaystyle a=\sqrt{300} = \sqrt{100\times3} = \sqrt{100}\times \sqrt3 = 10\sqrt3

Example Question #1 : Solve A Right Triangle

In the right triangle ABC, side AB is \displaystyle 9 cm long, side AC is \displaystyle 5 cm long, and side BC is the hypotenuse. How long is side BC?

Possible Answers:

\displaystyle 14 cm

\displaystyle 106 cm

\displaystyle \sqrt{106} cm

\displaystyle \sqrt{56} cm

Correct answer:

\displaystyle \sqrt{106} cm

Explanation:

Given that ABC is a right triangle, the length of hypotenuse BC is the root of the sum of the squares of the two other sides (in other words, \displaystyle BC^2 = AB^2 + AC^2. Since AB is \displaystyle 9 cm long and AC is \displaystyle 5 cm long, we get that \displaystyle BC^2 = 81+25 = 106, and so \displaystyle BC = \sqrt{106}.

Example Question #1 : Solving Right Triangles

The side lengths of right triangle ABC are such that AC > BC > AB. AC = 25 and AB = 9. What is the length of BC?

Possible Answers:

\displaystyle 41

\displaystyle 16

\displaystyle 6\sqrt{17}

\displaystyle 45\sqrt{2}

\displaystyle 4\sqrt{34}

Correct answer:

\displaystyle 4\sqrt{34}

Explanation:

When you are using Pythagorean Theorem to calculate the missing side of a right triangle, it is crucial that you identify which side is the hypotenuse, \displaystyle c in the Pythagorean equation \displaystyle a^2+b^2=c^2. Here you're told that side AC is the longest of the three sides, so 25 will serve as the length of the hypotenuse and the value of \displaystyle c. This allows you to set up the equation:

\displaystyle a^{2}+9^{2}=25^{2}

And then you can perform the calculations on the known values:

 

\displaystyle 81+a^2=625

 

Meaning that:

\displaystyle a^2= 544\displaystyle a^{2}=544

From there you can simplify, arriving at a = 4 times the square root of 34.

\displaystyle a^2= 544\displaystyle a^{2}

Example Question #1 : Solve A Right Triangle

Isoscelestriangle_800

Given \displaystyle a=6ft, and the lower angles of the isosceles triangle are \displaystyle 68^\circ, what is the length of \displaystyle h? Round to the nearest tenth.

Possible Answers:

\displaystyle 8ft

\displaystyle 7ft

\displaystyle 7.43ft

\displaystyle 7.4ft

Correct answer:

\displaystyle 7.4ft

Explanation:

Since the angle of the isosceles is \displaystyle 68^\circ, the larger angle of the right triangle formed by \displaystyle h is also \displaystyle 68^\circ.

Using \displaystyle tan(68), we can find \displaystyle h

\displaystyle tan(68)=\frac{h}{3}.

Then solve for \displaystyle h

\displaystyle 3tan(68)=h.

Simplify: \displaystyle 7.42526056=h.

Lastly, round and add appropriate units: \displaystyle 7.4ft=h.

Example Question #1 : Solving Right Triangles

In isosceles triangle \displaystyle ABC, \displaystyle m\angle A = m\angle B = 29^\circ.  If side \displaystyle AB = 10, what is the approximate length of the two legs \displaystyle AC and \displaystyle BC?

Possible Answers:

\displaystyle 5.7

\displaystyle 6.1

\displaystyle 5.2

\displaystyle 4.5

\displaystyle 6.8

Correct answer:

\displaystyle 5.7

Explanation:

Isos

In the diagram, AB is cut in half by the altitude. 

From here it easy to use right triangle trigonometry to solve for AC.

\displaystyle \\ \cos 29^\circ =\frac{opp}{hyp}= \frac {5}{AC} \\* \\* AC = \frac {5}{cos 29^\circ} \approx 5.7

Example Question #1 : Solve A Right Triangle

Find the area of the following Isosceles triangle (units are in cm):

Varsity log graph

Possible Answers:

\displaystyle 32.25 \; cm^{2}

\displaystyle 32\; cm^{2}

\displaystyle 36 \; cm^{2}

\displaystyle 72\; cm^{2}

\displaystyle 64.5 \; cm^{2}

Correct answer:

\displaystyle 32.25 \; cm^{2}

Explanation:

The formula for the area of a triangle is:

 \displaystyle A=\frac{1}{2}\cdot base\cdot height

We already know what the base is and we can find the height by dividing the isosceles triangle into 2 right triangles: 

 

Varsity log graph

From there, we can use the Pathegorean Theorem to calculate height:

\displaystyle 9^{2}=h^{2}+4^{2}

\displaystyle h^{2}=81-16=65

\displaystyle h=\sqrt{65}

To find the area, now we just plug these values into the formula:

\displaystyle A= \frac{1}{2}\cdot8 \cdot \sqrt{65}

\displaystyle A=32.25 cm^{2}

Example Question #1 : Trigonometric Applications

Find the area of the given isosceles triangle and round all values to the nearest tenth:

Varsity log graph

Possible Answers:

\displaystyle 66.6 \; cm^{2}

\displaystyle 133.2 \; cm^{2}

\displaystyle 46.2 \; cm^{2}

\displaystyle 102.2 \; cm^{2}

\displaystyle 51.1 \; cm^{2}

Correct answer:

\displaystyle 51.1 \; cm^{2}

Explanation:

The first step to solve for area is to divide the isosceles into two right triangles:

Varsity log graph

From there, we can determine the height and base needed for our area equation \displaystyle A=\frac{1}{2}\cdot b \cdot h 

\displaystyle sin(67.5^{\circ})=\frac{1/2Base}{12\; cm}

\displaystyle 0.924=\frac{1/2Base}{12\; cm}

\displaystyle 1/2Base=11.1\;cm

\displaystyle Base=22.2 \; cm

From there, height can be easily determined using the Pathegorean Theorem:

\displaystyle (12\; cm)^{2}=(11.1\; cm)^{2}+h^{2}

\displaystyle h^{2}=144\; cm^{2}-123.2\; cm^{2}=20.8cm^{2}

\displaystyle Height=4.6\; cm

Now both values can be plugged into the Area formula:

\displaystyle A=\frac{1}{2}\cdot22.2\; cm\cdot4.6\; cm=51.1cm^{2}

Learning Tools by Varsity Tutors