8th Grade Math : Geometry

Study concepts, example questions & explanations for 8th Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Geometry

The image provided contains a set of parallel lines, \(\displaystyle \overline{AB}\) and \(\displaystyle \overline{CD}\), and a transversal line, \(\displaystyle \overline{EF}\). If angle \(\displaystyle \angle{\ a}\) is equal to \(\displaystyle 135^\circ\), then which of the other angles is equal to \(\displaystyle 135^\circ?\)

2

Possible Answers:

\(\displaystyle \angle{\ d}\)

\(\displaystyle \angle{\ f}\)

\(\displaystyle \angle{\ c}\)

\(\displaystyle \angle{\ b}\)

Correct answer:

\(\displaystyle \angle{\ c}\)

Explanation:

First, we need to define some key terms:

Parallel Lines: Parallel lines are lines that will never intersect with each other. 

Transversal Line: A transversal line is a line that crosses two parallel lines.

In the the image provided, lines \(\displaystyle \overline{AB}\) and \(\displaystyle \overline{CD}\) are parallel lines and line \(\displaystyle \overline{EF}\) is a transversal line because it crosses the two parallel lines.

It is important to know that transversal lines create angle relationships:

  • Vertical angles are congruent
  • Corresponding angles are congruent
  • Alternate interior angles are congruent
  • Alternate exterior angles are congruent

Let's look at angle \(\displaystyle \angle{\ a}\) in the image provided below to demonstrate our relationships. 

1

Angle \(\displaystyle \angle{\ a}\) and \(\displaystyle \angle{\ c}\) are vertical angles.

Angle \(\displaystyle \angle{\ a}\) and \(\displaystyle \angle{\ e}\) are corresponding angles. 

Angle \(\displaystyle \angle{\ a}\) and \(\displaystyle \angle{\ g}\) are exterior angles. 

Angle \(\displaystyle \angle{\ a}\) is an exterior angle; therefore, it does not have an alternate interior angle. In this image, the alternate interior angles are the angle pairs \(\displaystyle \angle{\ e}\) and \(\displaystyle \angle{\ c}\) as well as angle \(\displaystyle \angle{\ d}\) and \(\displaystyle \angle{\ f}\)

For this problem, we want to find the angle that is congruent to angle \(\displaystyle \angle{\ a}\). Based on our answer choices, angle \(\displaystyle \angle{\ a}\) and \(\displaystyle \angle{\ c}\) are vertical angles; thus, both angle \(\displaystyle \angle{\ a}\) and \(\displaystyle \angle{\ c}\) are congruent and equal \(\displaystyle 135^\circ\)

Example Question #2 : Geometry

Calculate the length of the missing side of the provided triangle. Round the answer to the nearest whole number.


3

Possible Answers:

\(\displaystyle 37\textup{ cm}\)

\(\displaystyle 36\textup{ cm}\)

\(\displaystyle 35\textup{ cm}\)

\(\displaystyle 34\textup{ cm}\)

Correct answer:

\(\displaystyle 37\textup{ cm}\)

Explanation:

The provided triangle is a right triangle. We know this because the angle marker in the left corner of the triangle indicates that the triangle possesses a right or \(\displaystyle 90^\circ\) angle. When a triangle includes a right angle, the triangle is said to be a "right triangle." 

We can use the Pythagorean Theorem to help us solve this problem.

The Pythagorean Theorem states that for right triangles, the square of the hypotenuse is equal to the sum of the square of the other two sides. In other terms:

\(\displaystyle a^2+b^2=c^2\)

2

We can use the formula and substitute the known side lengths from the problem to solve for the missing side length:

\(\displaystyle 12^2+35^2=c^2\)

\(\displaystyle 144+1\textup,225=c^2\)

\(\displaystyle 1\textup,369=c^2\)

\(\displaystyle \sqrt{1\textup,369}=\sqrt{c^2}\)

\(\displaystyle 37=c\)

Example Question #5 : 8th Grade Math

Calculate the volume of the cone provided. Round the answer to the nearest hundredth. 


3

Possible Answers:

\(\displaystyle 60.23\textup{ in}^3\)

\(\displaystyle 56.55\textup{ in}^3\)

\(\displaystyle 58.45\textup{ in}^3\)

\(\displaystyle 62.22\textup{ in}^3\)

Correct answer:

\(\displaystyle 56.55\textup{ in}^3\)

Explanation:

In order to solve this problem, we need to recall the formula used to calculate the volume of a cone:

\(\displaystyle V=\pi r^2\left ( \frac{h}{3} \right )\)

Now that we have this formula, we can substitute in the given values and solve:

\(\displaystyle V=\pi3^2\left ( \frac{6}{3} \right )\)

\(\displaystyle V=\pi9(2)\)

\(\displaystyle V=\pi18\)

\(\displaystyle V=56.55\textup{ in}^3\)

Learning Tools by Varsity Tutors