ACT Math : How to graph complex numbers

Study concepts, example questions & explanations for ACT Math

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #1 : How To Graph Complex Numbers

The graph of \displaystyle y=-4x^{2}+6 passes through \displaystyle (1,2a) in the standard \displaystyle (x,y) coordinate plane. What is the value of \displaystyle a?

Possible Answers:

\displaystyle 0

\displaystyle 1

\displaystyle 3

\displaystyle -1

\displaystyle 5

Correct answer:

\displaystyle 1

Explanation:

To answer this question, we need to correctly identify where to plug in our given values and solve for \displaystyle a.

Points on a graph are written in coordinate pairs. These pairs show the \displaystyle x value first and the \displaystyle y value second. So, for this data:

\displaystyle (1,2a) means that \displaystyle 1 is the \displaystyle x value and \displaystyle 2a is the \displaystyle y value.

We must now plug in our \displaystyle x and \displaystyle y values into the original equation and solve. Therefore:

\displaystyle y=-4x^{2}+6\rightarrow 2a=-4(1)^{2}+6

We can now begin to solve for \displaystyle a by adding up the right side and dividing the entire equation by \displaystyle 2.

\displaystyle 2a=-4(1)^{2}+6\rightarrow 2a=-4+6\rightarrow2a=2

\displaystyle 2a=2\rightarrow \frac{2a}{2}=\frac{2}{2}\rightarrow a=1

Therefore, the value of \displaystyle a is \displaystyle 1.

Example Question #1 : How To Graph Complex Numbers

Coordinate_pair_1

Point A represents a complex number.  Its position is given by which of the following expressions?

Possible Answers:

\displaystyle -2+3

\displaystyle 3-2

\displaystyle -2+3i

\displaystyle 3-2i

Correct answer:

\displaystyle 3-2i

Explanation:

Complex numbers can be represented on the coordinate plane by mapping the real part to the x-axis and the imaginary part to the y-axis.  For example, the expression \displaystyle a+bi can be represented graphically by the point \displaystyle (a,b).

Here, we are given the graph and asked to write the corresponding expression.

\displaystyle 3-2i not only correctly identifies the x-coordinate with the real part and the y-coordinate with the imaginary part of the complex number, it also includes the necessary \displaystyle i

\displaystyle 3-2 correctly identifies the x-coordinate with the real part and the y-coordinate with the imaginary part of the complex number, but fails to include the necessary \displaystyle i.

\displaystyle -2+3i misidentifies the y-coordinate with the real part and the x-coordinate with the imaginary part of the complex number.

\displaystyle -2+3 misidentifies the y-coordinate with the real part and the x-coordinate with the imaginary part of the complex number.  It also fails to include the necessary \displaystyle i.

Example Question #2 : Graphing

Which of the following graphs represents the expression \displaystyle 4-i?

Possible Answers:

Coordinate_pair_4

Complex numbers cannot be represented on a coordinate plane.

Coordinate_pair_5

Coordinate_pair_2

Coordinate_pair_3

Correct answer:

Coordinate_pair_4

Explanation:

Complex numbers can be represented on the coordinate plane by mapping the real part to the x-axis and the imaginary part to the y-axis.  For example, the expression \displaystyle a+bi can be represented graphically by the point \displaystyle (a,b).

Here, we are given the complex number \displaystyle 4-i and asked to graph it.  We will represent the real part, \displaystyle 4, on the x-axis, and the imaginary part, \displaystyle -i, on the y-axis.  Note that the coefficient of \displaystyle i is \displaystyle -1; this is what we will graph on the y-axis.  The correct coordinates are \displaystyle (4,-1).

 

Example Question #2 : How To Graph Complex Numbers

The point \displaystyle \small (3, 5b) is on the graph of \displaystyle \small y=2x^{3}-9. What is the value of \displaystyle \small b?

Possible Answers:

\displaystyle \small 4

\displaystyle \small -1

\displaystyle \small 9

\displaystyle \small 45

\displaystyle \small 0

Correct answer:

\displaystyle \small 9

Explanation:

Because points on a graph are written in the form of \displaystyle \small (x,y), and the point given was \displaystyle \small (3, 5b), this means that \displaystyle \small x=3 and \displaystyle \small y=5b.

In order to solve for \displaystyle \small b, these values for \displaystyle \small x and \displaystyle \small y must be plugged into the given equation. This gives us the following:

\displaystyle \small y=2x^3-9

\displaystyle \small 5b=2(3)^3-9

We then solve the equation by finding the value of the right side, then dividing the entire equation by 5, as follows:

\displaystyle \small 5b=2(27)-9

\displaystyle 5b=54-9

\displaystyle 5b=45

\displaystyle \frac{5b}{5}=\frac{45}{5}

\displaystyle b=9

Therefore, the value of \displaystyle \small b is \displaystyle \small 9.

Learning Tools by Varsity Tutors