Advanced Geometry : Coordinate Geometry

Study concepts, example questions & explanations for Advanced Geometry

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Graphing A Logarithm

What is the \displaystyle x-intercept of the graph of \displaystyle y = \log _{2}(x+ 4) ?

Possible Answers:

\displaystyle (2,0)

The graph has no \displaystyle x-intercept.

\displaystyle (-3,0)

\displaystyle (-4,0)

\displaystyle (1,0)

Correct answer:

\displaystyle (-3,0)

Explanation:

Set \displaystyle y = 0 and solve:

\displaystyle y = \log _{2}(x+ 4)

\displaystyle \log _{2}(x+ 4) = 0

\displaystyle 2 ^ {\log _{2}(x+ 4) }= 2 ^ { 0}

\displaystyle x + 4 = 1

\displaystyle x + 4 - 4 = 1 - 4

\displaystyle x = -3

The  \displaystyle x-intercept is \displaystyle (-3,0).

Example Question #64 : Graphing

What is the \displaystyle y-intercept of the graph of \displaystyle y = \log _{3}(x+ 9) ?

Possible Answers:

\displaystyle (0,3)

The graph has no \displaystyle y-intercept.

\displaystyle (0,-6)

\displaystyle (0,2)

\displaystyle (0,-9)

Correct answer:

\displaystyle (0,2)

Explanation:

Set \displaystyle x= 0 and evaluate \displaystyle y:

\displaystyle y = \log _{3}(x+ 9)

\displaystyle y = \log _{3}(0+ 9) = \log _{3}9

Since \displaystyle 3 ^{2} =9

\displaystyle \log _{3}9 =2, and the \displaystyle y-intercept is \displaystyle (0,2).

Example Question #1 : Graphing A Logarithm

What is the vertical asymptote of the graph of \displaystyle y = \log_{5} (x-7) ?

Possible Answers:

\displaystyle x = 12

\displaystyle x = 7

\displaystyle x = 8

The graph has no vertical asymptote.

\displaystyle x = 6

Correct answer:

\displaystyle x = 7

Explanation:

The graph of a logarithmic function has a vertical asymptote which can be found by finding the value at which the power is equal to 0:

\displaystyle x-7 = 0 \Rightarrow x = 7

If \displaystyle x \leq 7, then \displaystyle \log_{5} (x-7) is an undefined expression, so the vertical asymptote is \displaystyle x = 7.

Example Question #1 : Coordinate Geometry

Define a function \displaystyle g as follows:

\displaystyle g(x) =2 \log_{4}(x-4)+ 3

Give the \displaystyle x-intercept of the graph of \displaystyle g.

Possible Answers:

\displaystyle (12,0)

\displaystyle \left ( 3\frac{7}{8}, 0 \right )

\displaystyle \left ( 4\frac{1}{8}, 0 \right )

The graph of \displaystyle g has no \displaystyle x-intercept.

\displaystyle (-4, 0)

Correct answer:

\displaystyle \left ( 4\frac{1}{8}, 0 \right )

Explanation:

Set \displaystyle g(x) =0 and evaluate \displaystyle x to find the \displaystyle x-coordinate of the \displaystyle x-intercept.

\displaystyle g(x) =2 \log_{4}(x-4)+ 3 = 0

\displaystyle 2 \log_{4}(a-4) = -3

\displaystyle \log_{4}(a-4) = -\frac{3}{2}

This can be rewritten in exponential form:

\displaystyle a - 4 = 4 ^{-\frac{3}{2}}= \frac{1}{4 ^{ \frac{3}{2}}} = \frac{1}{(\sqrt{4 })^{ 3}} = \frac{1}{2^{ 3}} = \frac{1}{8}

\displaystyle a = 4\frac{1}{8}

The \displaystyle x-intercept of the graph of \displaystyle g is \displaystyle \left ( 4\frac{1}{8}, 0 \right ).

Example Question #1 : How To Graph A Logarithm

Define a function \displaystyle g as follows:

\displaystyle g(x) = \log_{9}(x-4)+ 2

Give the \displaystyle y\:-intercept of the graph of \displaystyle g.

Possible Answers:

\displaystyle (0, 2)

\displaystyle \left ( 0, 3\frac{80}{81}\right )

\displaystyle (0,4)

The graph of \displaystyle g has no \displaystyle y\:-intercept.

\displaystyle \left ( 0, 4\frac{1}{81}\right )

Correct answer:

The graph of \displaystyle g has no \displaystyle y\:-intercept.

Explanation:

The \displaystyle y\:-coordinate of the \displaystyle y\:-intercept is \displaystyle g(0):

\displaystyle g(x) = \log_{9}(x-4)+ 2

\displaystyle g(0) = \log_{9}(0-4)+ 2

\displaystyle = \log_{9}( -4)+ 2

However, the logarithm of a negative number is an undefined expression, so \displaystyle g(0) is an undefined quantity, and the graph of \displaystyle g has no \displaystyle y\:-intercept.

Example Question #2 : Coordinate Geometry

Define a function \displaystyle g as follows:

\displaystyle g(x) =-2 \log_{8}(x+2)+ 3

Give the equation of the vertical asymptote of the graph of \displaystyle g.

Possible Answers:

\displaystyle x = 3

\displaystyle x = 2

\displaystyle x = \frac{2}{3}

\displaystyle x = -3

\displaystyle x = -2

Correct answer:

\displaystyle x = -2

Explanation:

Only positive numbers have logarithms, so

\displaystyle x+2 > 0

\displaystyle x> -2

The graph never crosses the vertical line of the equation \displaystyle x = -2, so this is the vertical asymptote. 

Example Question #814 : Geometry

Define a function \displaystyle g as follows:

\displaystyle g(x) =2 \ln (x-4)+ 3

Give the equation of the vertical asymptote of the graph of \displaystyle g.

Possible Answers:

\displaystyle x = 3

\displaystyle x = -\frac{3}{2}

\displaystyle x = 2

\displaystyle x = 4

The graph of \displaystyle g has no vertical asymptote.

Correct answer:

\displaystyle x = 4

Explanation:

Only positive numbers have logarithms, so

\displaystyle x- 4 > 0

\displaystyle x> 4

The graph never crosses the vertical line of the equation \displaystyle x = 4, so this is the vertical asymptote. 

Example Question #1 : Coordinate Geometry

Define a function \displaystyle g as follows:

\displaystyle g(x) =-2 \log_{8}(x+2)+ 3

Give the \displaystyle y\:-intercept of the graph of \displaystyle g.

Possible Answers:

\displaystyle (9,0)

\displaystyle (-3,0)

The graph of \displaystyle g has no \displaystyle y\:-intercept.

\displaystyle \left ( 3\frac{2}{3},0 \right )

\displaystyle \left ( 2\frac{1}{3},0 \right )

Correct answer:

\displaystyle \left ( 2\frac{1}{3},0 \right )

Explanation:

The \displaystyle y\:-coordinate of the \displaystyle y\:-intercept is \displaystyle g(0):

\displaystyle g(x) =-2 \log_{8}(x+2)+ 3

\displaystyle g(0) =-2 \log_{8}(0 +2)+ 3

\displaystyle g(0) =-2 \log_{8}2+ 3

Since 2 is the cube root of 8, \displaystyle 8^{\frac{1}{3}}= 2, and  \displaystyle \log_{8}2 = \frac{1}{3}. Therefore, 

\displaystyle g(0) =-2 \cdot \frac{1}{3}+ 3 = -\frac{2}{3}+ 3 = 2\frac{1}{3}.

The \displaystyle y\:-intercept is \displaystyle \left ( 2\frac{1}{3},0 \right ).

Example Question #816 : Geometry

Define functions \displaystyle f and \displaystyle g as follows:

\displaystyle f(x) = \log \frac{1}{x+3}

\displaystyle g(x) = \log (4x+12)

Give the \displaystyle y-coordinate of a point at which the graphs of the functions intersect.

Possible Answers:

\displaystyle -\log 2

The graphs of \displaystyle f and \displaystyle g do not intersect.

\displaystyle -2

\displaystyle \log 2

\displaystyle 2

Correct answer:

\displaystyle \log 2

Explanation:

Since \displaystyle - \log N = \log \left ( \frac{1}{N} \right ), the definition of \displaystyle f can be rewritten as follows:

\displaystyle f(x) = - \log (x+3)

First, we need to find the \displaystyle x-coordinate of the point at which the graphs of \displaystyle f and \displaystyle g meet by setting 

\displaystyle g(x)= f(x)

\displaystyle \log (4x+12)= \log \frac{1}{x+3}

Since the common logarithms of the polynomial and the rational expression are equal, we can set those expressions themselves equal, then solve:

\displaystyle (4x+12)= \frac{1}{x+3}

\displaystyle (4x+12)(x+3)= \frac{1}{x+3} \cdot (x+3)

\displaystyle 4x^{3}+24x+36 =1

\displaystyle 4x^{3}+24x+35 =0

We can solve using the \displaystyle ac method, finding two integers whose sum is 24 and whose product is \displaystyle 4 \cdot 35 = 140 - these integers are 10 and 14, so we split the niddle term, group, and factor: 

\displaystyle (4x^{3}+10x)+(14x+35 )=0

\displaystyle 2x (2x+5)+7(2x+5 )=0

\displaystyle (2x +7)(2x+5 )=0

\displaystyle 2x+7 = 0

\displaystyle 2x= -7

\displaystyle x = -\frac{7}{2} = -3\frac{1}{2}

or 

\displaystyle 2x+5= 0

\displaystyle 2x= -5

\displaystyle x = -\frac{5}{2} = -2\frac{1}{2}

This gives us two possible \displaystyle x-coordinates. However, since 

\displaystyle g\left ( -3\frac{1}{2} \right ) = \log \left [4\left ( -3\frac{1}{2} \right ) +12 \right ] = \log (-14+12) = \log (-2),

an undefined quantity - negative numbers not having logarithms -

we throw this value out. As for the other \displaystyle x-value, we evaluate: 

\displaystyle f\left ( -2\frac{1}{2} \right ) = \log \frac{1}{ -2\frac{1}{2} +3} = \log \frac{1}{\frac{1}{2}} = \log 2

and 

\displaystyle g\left ( -2\frac{1}{2} \right ) = \log \left [4\left ( -2\frac{1}{2} \right ) +12 \right ] = \log (-10+12) = \log 2

\displaystyle -2 \frac{1}{2} is the correct \displaystyle x-value, and \displaystyle \log 2 is the correct \displaystyle y-value.

Example Question #2 : Coordinate Geometry

Let \displaystyle (x,y) be the point of intersection of the graphs of these two equations:

\displaystyle 2 \log_{2} x-3 \log_{3} y = 13

\displaystyle 5 \log_{2} x+2 \log_{3} y = 4

Evaluate \displaystyle y\:.

Possible Answers:

\displaystyle y = 9

\displaystyle y = \frac{1}{27}

\displaystyle y = \frac{1}{9}

\displaystyle y = \frac{1}{27}

\displaystyle y = -27

Correct answer:

\displaystyle y = \frac{1}{27}

Explanation:

Substitute \displaystyle u and \displaystyle v for \displaystyle \log_{2} x and \displaystyle \log_{3} y, respectively, and solve the resulting system of linear equations:

\displaystyle 2 u-3 v = 13

\displaystyle 5 u+2 v = 4

Multiply the first equation by 2, and the second by 3, on both sides, then add:

\displaystyle 4 u-6 v = 26

\displaystyle \underline{15 u+6 v = 12}

\displaystyle 19u            \displaystyle =38

\displaystyle u = 38 \div 19 = 2

Now back-solve:

\displaystyle 5 (2)+2 v = 4

\displaystyle 10+2 v = 4

\displaystyle 2v=-6

\displaystyle v= -3

We need to find both \displaystyle x and \displaystyle y to ensure a solution exists. By substituting back:

\displaystyle u = 2

\displaystyle \log_{2} x = 2

\displaystyle x = 2^{2} = 4.

 

\displaystyle v= -3

\displaystyle \log_{3} y = -3

\displaystyle y = 3^{-3} = \frac{1}{3^{3}} = \frac{1}{27}

\displaystyle \left (4, \frac{1}{27} \right ) is the solution, and \displaystyle y = \frac{1}{27}, the correct choice.

 

Learning Tools by Varsity Tutors