Algebra 1 : Monomials

Study concepts, example questions & explanations for Algebra 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Monomials

 \displaystyle Expand \;x(x-2)

Possible Answers:

\displaystyle 2x -2

\displaystyle x^{2}+2x

\displaystyle x^{2}-2x

\displaystyle x^{2}

Correct answer:

\displaystyle x^{2}-2x

Explanation:
\(\displaystyle Expand \; the \; following: \;x(x-2)\)\(\displaystyle Distribute \; x \; over \; x-2.\)\(\displaystyle xx+x(-2)\)
\(\displaystyle Answer: \; x^2-2x\)

 

 

Example Question #1 : Monomials

Evaluate.

\displaystyle ab(ab^{2}+4a-b)

Possible Answers:

\displaystyle a^{2}b^{2}+4a-b

\displaystyle 4a^{3}b^{2}

\displaystyle a^{2}b^{3}+4a^{2}b-ab^{2}

\displaystyle 2ab+4a-b

Correct answer:

\displaystyle a^{2}b^{3}+4a^{2}b-ab^{2}

Explanation:

\displaystyle ab(ab^{2}+4a-b)

Using the distributive property you are simply going to share the term \displaystyle ab, with every term in the poynomial

\displaystyle ab\cdot ab^{2}+ ab\cdot 4a- ab\cdot b

Now because we are multiplying like variables we can add the exponents, to simplify each expression

\displaystyle a^{2}b^{3}+4a^{2}b-ab^{2}   

This will be our final answer because we can not add terms unless they are 'like' meaning they contain the same elements and degrees. 

 

 

Example Question #3 : Monomials

Multiply:

\displaystyle -3t ^{2} ( 2t ^{2} - 5t + 7)

Possible Answers:

\displaystyle -6 t ^{4} + 15t ^{3} -21t ^{2}

\displaystyle -6 t ^{4} - 5t ^{3} +7t ^{2}

\displaystyle -6 t ^{4} - 15t ^{3} -21t ^{2}

\displaystyle -6 t ^{4} - 15t ^{3} +21t ^{2}

\displaystyle -6 t ^{4} + 5t ^{3} -7t ^{2}

Correct answer:

\displaystyle -6 t ^{4} + 15t ^{3} -21t ^{2}

Explanation:

\displaystyle -3t ^{2} ( 2t ^{2} - 5t + 7)

\displaystyle = -3t ^{2} \cdot 2t ^{2} - \left (-3t ^{2} \right )\cdot 5t +\left (-3t ^{2} \right )\cdot 7

\displaystyle = -3t ^{2} \cdot 2t ^{2} + 3t ^{2} \cdot 5t -3t ^{2}\cdot 7

\displaystyle = -3\cdot 2 \cdot t ^{2} \cdot t ^{2} + 3\cdot 5 \cdot t ^{2} \cdot t -3\cdot 7 \cdot t ^{2}

\displaystyle = -6 \cdot t ^{2+2} + 15\cdot t ^{2+1} -21 \cdot t ^{2}

\displaystyle = -6 t ^{4} + 15t ^{3} -21t ^{2}

Example Question #1 : Monomials

Simplify the following:

\displaystyle (2p^{2})(4x+p)

Possible Answers:

\displaystyle 8xp^{2}+2p^{3}

None of the other answers

\displaystyle (8xp)^{2}+2p^{3}

\displaystyle 6xp^{2}+3p^{3}

\displaystyle 8xp^{2}+2p^{2}

Correct answer:

\displaystyle 8xp^{2}+2p^{3}

Explanation:

Distribute the \displaystyle 2p^{2} to each term in the parentheses in the other polynomial.

\displaystyle 2p^{2}(4x)=8xp^{2}

\displaystyle 2p^{2}(p)=2p^{3}

Putting the results back together

\displaystyle (2p^{2})(4x+p)=8xp^{2}+2p^{3}

Example Question #5 : Monomials

Multiply:

\displaystyle -4x(3x^2-2x+4)

Possible Answers:

\displaystyle -12x^3-8x^2-16x

\displaystyle 12x^3-8x^2+16x

\displaystyle -12x^3-8x^2+16x

\displaystyle -12x^3+8x^2-16x

Correct answer:

\displaystyle -12x^3+8x^2-16x

Explanation:

Multiply each term of the polynomial by \displaystyle -4x. Be careful to distribute the negative sign.

 

\displaystyle (-4x)(3x^2)=-12x^3

\displaystyle (-4x)(-2x)=8x^2

\displaystyle (-4x)(4)=-16x

Add the individual terms together:

\displaystyle -12x^3+8x^2+(-16x)=12x^3+8x^2-16x

Example Question #2 : Monomials

Simplify the following

\displaystyle (7y)(7t-3y^{3} + 2)

Possible Answers:

\displaystyle 49yt-21y^{4} +14y

\displaystyle 28y-21y^{4} +14t

\displaystyle 49yt-21y^{2} +14y

\displaystyle 14yt-21y^{4} +14y

\displaystyle 14yt-10y^{4} +14y

Correct answer:

\displaystyle 49yt-21y^{4} +14y

Explanation:

Distribute \displaystyle 7y to each term in the parentheses in the polynomial

\displaystyle 7y(7t)=49yt

\displaystyle 7y(-3y^{3})=-21y^{4}

\displaystyle 7y(2)=14y

Combine the results

\displaystyle (7y)(7t-3y^{3} + 2)=49yt-21y^{4} +14y

Example Question #2 : Monomials

Expand the expression by multiplying the terms.

\displaystyle \small (x-4)(x+2)(2x-5)

Possible Answers:

\displaystyle \small 2x^3+9x^2-6x+40

\displaystyle \small 2x^3-9x^2-6x+40

\displaystyle \small 2x^3-x^2-26x+40

\displaystyle \small 2x^3+x^2-26x+40

Correct answer:

\displaystyle \small 2x^3-9x^2-6x+40

Explanation:

\displaystyle \small (x-4)(x+2)(2x-5)

When multiplying, the order in which you multiply does not matter. Let's start with the first two monomials.

 \displaystyle (x-4)(x+2)

Use FOIL to expand.

\displaystyle x^2+2x-4x-8=x^2-2x-8

Now we need to multiply the third monomial.

\displaystyle \small (x-4)(x+2)(2x-5)=(x^2-2x-8)(2x-5)

Similar to FOIL, we need to multiply each combination of terms.

\displaystyle 2x(x^2-2x-8)+(-5)(x^2-2x-8)

\displaystyle 2x^3-4x^2-16x-5x^2+10x+40

Combine like terms.

\displaystyle 2x^3-9x^2-6x+40

Example Question #4 : Simplifying Expressions

Find the product:

\displaystyle \small 7n(8n-2)

Possible Answers:

\displaystyle \small n-14

\displaystyle \small n^2+14

\displaystyle \small 56n^2-14n

\displaystyle \small n^2-14n

Correct answer:

\displaystyle \small 56n^2-14n

Explanation:

First, mulitply the mononomial by the first term of the polynomial:

\displaystyle \small 7n\times8n\ = 56n^2

Second, multiply the monomial by the second term of the polynomial:

\displaystyle \small 7n\times (-2)\ = -14n

Add the terms together:

\displaystyle \small 56n^2\ +\ (-14n)\ = 56n^2-14n

Example Question #3 : Monomials

Expand: \displaystyle 8x(3x+7)

 

Possible Answers:

\displaystyle 24x^2 + 56x

\displaystyle 24x^2 + 56

\displaystyle 24x + 56

\displaystyle 11x + 15

\displaystyle 11x^2 + 15x

Correct answer:

\displaystyle 24x^2 + 56x

Explanation:

To expand, multiply 8x by both terms in the expression (3x + 7).

8x multiplied by 3x is 24x².

8x multiplied by 7 is 56x.

Therefore, 8x(3x + 7) = 24x² + 56x.

Example Question #2 : Monomials

Write \displaystyle 4x^2(3x^2+2x+4) as a polynomial. 

Possible Answers:

\displaystyle 7x^{4}+6x^{3}+8x^{2}

\displaystyle 12x^{4}+8x^{3}+16x^{2}

\displaystyle 12x^{2}+8x+16

\displaystyle 12x^{4}+8x^{2}+8x

\displaystyle 36x^{2}

Correct answer:

\displaystyle 12x^{4}+8x^{3}+16x^{2}

Explanation:

We need to distribute the 4x2 through the terms in the parentheses:

\displaystyle 4x^2(3x^2+2x+4)=4x^2(3x^2)+4x^2(2x)+4x^2(4)

This becomes \displaystyle 12x^4+8x^3+16x^2.

Learning Tools by Varsity Tutors