Algebra 3/4 : Properties of Logarithms & Exponents

Study concepts, example questions & explanations for Algebra 3/4

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Properties Of Logarithms & Exponents

Convert the expression from logarithmic to exponential.

\displaystyle \log_6 216=3

Possible Answers:

\displaystyle 6^3=216

\displaystyle 216^{1/6}=3

\displaystyle 216=3^{1/6}

\displaystyle 3^6=216

\displaystyle 216=6^{1/3}

Correct answer:

\displaystyle 6^3=216

Explanation:

To convert the logarithmic expression to exponential form, recall the change of base formula.

\displaystyle \log_b a=c\rightarrow b^c=a

Apply the change of base formula to this particular logarithmic expression.

\displaystyle \log_6 216=3

\displaystyle \\b=6 \\a=216 \\c=3

The exponential form becomes

\displaystyle 6^3=216

Example Question #2 : Properties Of Logarithms & Exponents

Convert the expression from logarithmic to exponential.

\displaystyle \log_4 1024=5

Possible Answers:

\displaystyle 4^5=1024

\displaystyle 5^4=1020

\displaystyle 4^5=1025

\displaystyle 5^4=1024

\displaystyle 1024^\frac{1}{4}=5

Correct answer:

\displaystyle 4^5=1024

Explanation:

To convert the logarithmic expression to exponential form, recall the change of base formula.

\displaystyle \log_b a=c\rightarrow b^c=a

Apply the change of base formula to this particular logarithmic expression.

\displaystyle \log_4 1024=5

\displaystyle \\b=4 \\a=1024 \\c=5

The exponential form becomes

\displaystyle 4^5=1024

Example Question #3 : Properties Of Logarithms & Exponents

Convert the expression from logarithmic to exponential.

\displaystyle \log_3 9=2

Possible Answers:

\displaystyle 2^3=9

\displaystyle 9^\frac{1}{3}=2

\displaystyle 3^2=9

\displaystyle 9^2=3

\displaystyle 3^3=9

Correct answer:

\displaystyle 3^2=9

Explanation:

To convert the logarithmic expression to exponential form, recall the change of base formula.

\displaystyle \log_b a=c\rightarrow b^c=a

Apply the change of base formula to this particular logarithmic expression.

\displaystyle \log_3 9=2

\displaystyle \\b=3 \\a=9 \\c=2

The exponential form becomes

\displaystyle 3^2=9

Example Question #14 : Algebra 3/4

Convert the expression from logarithmic to exponential.

\displaystyle \log_6 216=3

Possible Answers:

\displaystyle 3^6=216

\displaystyle 216^{1/6}=3

\displaystyle 216=6^{1/3}

\displaystyle 216=3^{1/6}

\displaystyle 6^3=216

Correct answer:

\displaystyle 6^3=216

Explanation:

To convert the logarithmic expression to exponential form, recall the change of base formula.

\displaystyle \log_b a=c\rightarrow b^c=a

Apply the change of base formula to this particular logarithmic expression.

\displaystyle \log_6 216=3

\displaystyle \\b=6 \\a=216 \\c=3

The exponential form becomes

\displaystyle 6^3=216

Example Question #15 : Algebra 3/4

Convert the expression from logarithmic to exponential.

\displaystyle \log_4 1024=5

Possible Answers:

\displaystyle 4^5=1025

\displaystyle 4^5=1024

\displaystyle 1024^\frac{1}{4}=5

\displaystyle 5^4=1020

\displaystyle 5^4=1024

Correct answer:

\displaystyle 4^5=1024

Explanation:

To convert the logarithmic expression to exponential form, recall the change of base formula.

\displaystyle \log_b a=c\rightarrow b^c=a

Apply the change of base formula to this particular logarithmic expression.

\displaystyle \log_4 1024=5

\displaystyle \\b=4 \\a=1024 \\c=5

The exponential form becomes

\displaystyle 4^5=1024

Learning Tools by Varsity Tutors