Algebra II : Rational Expressions

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : How To Find The Solution Of A Rational Equation With A Binomial Denominator

 

 

Which of the following fractions is NOT equivalent to \displaystyle - \frac{x-5}{2x + 3} ?

 

Possible Answers:

\displaystyle \frac{-x+5}{2x+3}

\displaystyle \frac{x-5}{-2x-3}

\displaystyle \frac{x+5}{2x + 3}

Correct answer:

\displaystyle \frac{x+5}{2x + 3}

Explanation:

We know that \displaystyle -\frac{a}{b} is equivalent to \displaystyle \frac{-a}{b} or \displaystyle \frac{a}{-b}.

By this property, there is no way to get \displaystyle \frac{x+5}{2x+3} from \displaystyle -\frac{x-5}{2x+3}.

Therefore the correct answer is \displaystyle \frac{x+5}{2x+3}.

Example Question #2 : Rational Expressions

Determine the domain of 

\displaystyle \frac{x+1}{x-1}

Possible Answers:

All real numbers

\displaystyle x=1

\displaystyle x\neq1

\displaystyle x\neq-1

Correct answer:

\displaystyle x\neq1

Explanation:

Because the denominator cannot be zero, the domain is all other numbers except for 1, or

\displaystyle x\neq1

Example Question #2 : Understanding Rational Expressions

Simplify:

 \displaystyle \frac{x^2-1}{x^2+4x+2}\div\frac{x^2+2x+1}{x^2+3x+2}

Possible Answers:

\displaystyle x-1

\displaystyle \frac{x+2}{x+1}

\displaystyle \frac{x-1}{x+2}

\displaystyle \frac{x+2}{x-1}

\displaystyle \frac{1}{\frac{1}{x+1}}

Correct answer:

\displaystyle \frac{x-1}{x+2}

Explanation:

This problem is a lot simpler if we factor all the expressions involved before proceeding:

Next let's remember how we divide one fraction by another—by multiplying by the reciprocal:

 

In this form, we can see that a lot of terms are going to start canceling with each other. All that we're left with is just \displaystyle \frac{x-1}{x+2}.

Example Question #3 : Definition Of Rational Expression

Which of the following is the best definition of a rational expression?

Possible Answers:

Correct answer:

Explanation:

The rational expression is a ratio of two polynomials.  

\displaystyle \frac{A(x)}{B(x)}

The denominator cannot be zero.

An example of a rational expression is:

\displaystyle \frac{x^2+x-5}{x+8}

The answer is:  

Example Question #2 : How To Find The Solution Of A Rational Equation With A Binomial Denominator

Find the values of \displaystyle x which will make the given rational expression undefined:

 

\displaystyle \frac{x+5}{\left ( x-1 \right )\left ( x+2 \right )}

Possible Answers:

\displaystyle x = 1, -2

\displaystyle x = -5, +2

\displaystyle x = -1, -2

\displaystyle x = -5, 1

\displaystyle x = -1, 2

Correct answer:

\displaystyle x = 1, -2

Explanation:

If \displaystyle \left ( x-1 \right ) = 0 or \displaystyle \left ( x+2 \right ) =0, the denominator is 0, which makes the expression undefined.

 This happens when x = 1 or when x = -2.

Therefore the correct answer is \displaystyle x = 1, -2.

Example Question #2 : Properties Of Fractions

Simply the expression:

\displaystyle \frac{4}{x+6}+ \frac{9}{x+4}

Possible Answers:

\displaystyle \frac{18x+60}{x^{2}-10x+28}

\displaystyle \frac{15x+70}{x^{2}+4x+18}

\displaystyle \frac{12x+40}{x^{2}-4x+10}

\displaystyle \frac{13x+70}{x^{2}+10x+24}

\displaystyle \frac{14x+20}{x^{2}+9x+15}

Correct answer:

\displaystyle \frac{13x+70}{x^{2}+10x+24}

Explanation:

In order to simplify the expression \displaystyle \frac{4}{x+6}+ \frac{9}{x+4}, we need to ensure that both terms have the same denominator. In order to do so, find the Least Common Denominator (LCD) for both terms and simplify the expression accordingly:

 

\displaystyle \frac{4(x+4)}{(x+6)(x+4)} + \frac{9(x+6)}{(x+4)(x+6)}

\displaystyle =\frac{4(x+4) +9(x+6)}{(x+6)(x+4)}

\displaystyle =\frac{4x+16+9x+54}{x^{2}+10x+24}

\displaystyle =\frac{13x+70}{x^{2}+10x+24}

Example Question #1 : Properties Of Fractions

Simplify the expression:

\displaystyle \frac{x-7}{x+3}+ \frac{9}{x^{2}+10x+21}

Possible Answers:

\displaystyle \frac{7x+63}{x^{2}+8x+16}

\displaystyle \frac{x^{2}-40}{x^{2}+10x+21}

\displaystyle \frac{9x-63}{x^{2}+6x+5}

\displaystyle \frac{7x-49}{x^{2}-6x-7}

\displaystyle \frac{9x+18}{x^{2}+10x+9}

Correct answer:

\displaystyle \frac{x^{2}-40}{x^{2}+10x+21}

Explanation:

In order to simplify the expression  \displaystyle \frac{x-7}{x+3}+ \frac{9}{x^{2}+10x+21}, first note that the denominators in both terms share a factor:

\displaystyle \frac{x-7}{x+3}+ \frac{9}{(x+3)(x+7)}

Find the Least Common Denominator (LCD) of both terms:

\displaystyle \frac{(x-7)(x+7)}{(x+3)(x+7)}+ \frac{9}{(x+3)(x+7)}

\displaystyle =\frac{x^{2}-49}{x^{2}+10x+21}+ \frac{9}{x^{2}+10x+21}

 

Finally, combine like terms:

\displaystyle \frac{x^{2}-49+9}{x^{2}+10x+21}

\displaystyle =\frac{x^{2}-40}{x^{2}+10x+21}

Example Question #2 : Properties Of Fractions

Simplify the expression:

\displaystyle \frac{5}{x+2} -\frac{10}{x+3}

Possible Answers:

\displaystyle \frac{-5}{x}

\displaystyle \frac{5x-5}{x^{2}+5x-6}

\displaystyle \frac{-5x+5}{x^{2}-5x-6}

\displaystyle \frac{-5}{x^{2}+5x+6}

\displaystyle \frac{-5x-5}{x^{2}+5x+6}

Correct answer:

\displaystyle \frac{-5x-5}{x^{2}+5x+6}

Explanation:

\displaystyle \frac{5}{x+2} -\frac{10}{x+3}

 

1. Create a common denominator between the two fractions.

\displaystyle \frac{5(x+3)}{(x+2)(x+3)} -\frac{10(x+2)}{(x+3)(x+2)}

 

2. Simplify.

\displaystyle =\frac{5(x+3)-10(x+2)}{(x+2)(x+3)}

\displaystyle =\frac{5x+15-10x-20}{x^{2}+5x+6}

\displaystyle =\frac{-5x-5}{x^{2}+5x+6}

Example Question #1 : Rational Expressions

Find the values of \displaystyle x which will make this rational expression undefined:

\displaystyle \frac{x-1}{(x+2)(x-10)}

Possible Answers:

\displaystyle x=-2,1,10

\displaystyle x=-10,2

\displaystyle x=-1,2

\displaystyle x=-2,10

\displaystyle x=-2,1

Correct answer:

\displaystyle x=-2,10

Explanation:

For a rational expression to be undefined, the denominator must be equal to \displaystyle 0.

 

1. Set the denominator equal to \displaystyle 0.

\displaystyle (x+2)(x-10)=0

 

2. Set the factors equal to \displaystyle 0 and solve for \displaystyle x.

\displaystyle x+2=0

\displaystyle x=-2

and

\displaystyle x-10=0

\displaystyle x=10

Example Question #2 : Rational Expressions

Which value of \displaystyle x makes the following expression undefined?

\displaystyle \frac{x+1}{x-1}

Possible Answers:

\displaystyle -1

\displaystyle \text{Cannot be determined}

\displaystyle 1

\displaystyle \text{All real numbers}

Correct answer:

\displaystyle 1

Explanation:

A rational expression is undefined when the denominator is zero.

\displaystyle x-1=0

\displaystyle x=1

The denominator is zero when \displaystyle x=1.

Learning Tools by Varsity Tutors