Basic Geometry : How to find the perimeter of a square

Study concepts, example questions & explanations for Basic Geometry

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : How To Find The Perimeter Of A Square

The length of one side of a square is 6 inches.  What is the perimeter of the square?

Possible Answers:

\(\displaystyle 36\)

\(\displaystyle 20\)

\(\displaystyle 16\)

\(\displaystyle 12\)

\(\displaystyle 24\)

Correct answer:

\(\displaystyle 24\)

Explanation:

To find the perimeter of a square, multiply one of its sides by 4.

 

\(\displaystyle 6\cdot 4=24\)

Example Question #2 : How To Find The Perimeter Of A Square

The area of square \(\displaystyle ABCD\) is 196 square centimeters. What is the perimeter of \(\displaystyle ABCD\)?

Possible Answers:

\(\displaystyle 14\ cm\)

\(\displaystyle 56\ cm\)

\(\displaystyle 28\ cm\)

Cannot be determined.

\(\displaystyle 49\ cm\)

Correct answer:

\(\displaystyle 56\ cm\)

Explanation:

We know that \(\displaystyle area=length\cdot width\).

We also know that since \(\displaystyle ABCD\) is a square, all of its sides are of equal length.

To get the measure of any one side of \(\displaystyle ABCD\), take the square root of the area:

\(\displaystyle \sqrt{196}=14\) centimeters

Therefore each side of \(\displaystyle ABCD\) is 14 centimeters long.

To find the perimeter, multiply by 4:

\(\displaystyle 14\times4=56\) centimeters

Example Question #3 : How To Find The Perimeter Of A Square

A square tabletop has an area of \(\displaystyle 900\)\(\displaystyle in^2\). Find the perimeter of the tabletop.

Possible Answers:

\(\displaystyle 120\)\(\displaystyle in\)

\(\displaystyle 250\)  \(\displaystyle in\)

\(\displaystyle 450\)  \(\displaystyle in\)

\(\displaystyle 300\)  \(\displaystyle in\)

\(\displaystyle 30\) \(\displaystyle in\)

Correct answer:

\(\displaystyle 120\)\(\displaystyle in\)

Explanation:

First find the length of each side.

Take the square root of the area to find the side length:

\(\displaystyle \sqrt{900in^2}=30in\)

Since a square has \(\displaystyle 4\) equal sides, multiply the side length by \(\displaystyle 4\) to find the perimeter:

\(\displaystyle 4 *30in = 120\ in\)

Example Question #1 : How To Find The Perimeter Of A Square

A square garden has an area of 64 square feet. If you add 3 feet to each side, what is the new perimeter of the garden?

Possible Answers:

121

44

32

20

25

Correct answer:

44

Explanation:

By finding the square root of the area of the garden, you find the length of one side, which is 8. We add 3 feet to this, giving us 11, then multiply this by 4 to get 44 feet for the perimeter.

Example Question #2 : How To Find The Perimeter Of A Square

The area of the shaded region of a square is 18. What is the perimeter of the square?

Possible Answers:

28

20

24

36

Correct answer:

24

Explanation:

The area of the shaded region, which covers half of the square is 18 meaning that the total area of the square is 18 x 2, or 36. The area of a square is equal to the length of one side squared. Since the square root of 36 is 6, the length of 1 side is 6. The perimeter is the length of 1 side times 4 or 6 x 4.

Example Question #401 : Geometry

The area of a square is \(\displaystyle 25 cm^{2}\).  If the square is enlarged by a factor of 2, what is the perimeter of the new square?

Possible Answers:

\(\displaystyle 75\ cm\)

\(\displaystyle 40\ cm\)

\(\displaystyle 100\ cm\)

\(\displaystyle 50\ cm\)

\(\displaystyle 80\ cm\)

Correct answer:

\(\displaystyle 40\ cm\)

Explanation:

The area of a square is given by \(\displaystyle A = s^{2}\) so we know the side is 5 cm.  Enlarging by a factor of two makes the new side 10 cm.  The perimeter is given by \(\displaystyle P = 4s\), so the perimeter of the new square is 40 cm.

Example Question #4 : How To Find The Perimeter Of A Square

The diagonal of a square has a length of 10 inches. What is the perimeter of the square in inches squared?

Possible Answers:

\(\displaystyle 20\sqrt{2}\)

\(\displaystyle 6\sqrt{2}\)

\(\displaystyle 10\sqrt{2}\)

\(\displaystyle 5\sqrt{2}\)

Correct answer:

\(\displaystyle 20\sqrt{2}\)

Explanation:

Using the Pythagorean Theorem, we can find the edge of a side to be √50, by 2a2=102. This can be reduced to 5√2. This can then be multiplied by 4 to find the perimeter. 

Example Question #2 : How To Find The Perimeter Of A Square

What is the perimeter of a square with an area of \(\displaystyle 36\)?

Possible Answers:

\(\displaystyle 30\)

\(\displaystyle 16\)

\(\displaystyle 24\)

\(\displaystyle 36\)

\(\displaystyle 12\)

Correct answer:

\(\displaystyle 24\)

Explanation:

1. Find the side lengths:

\(\displaystyle Area= (side)^{2}\)

\(\displaystyle 36=(side)^{2}\)

\(\displaystyle side=6\)

 

2. Use the side lengths to find the perimeter:

\(\displaystyle Perimeter= 4(side)\)

\(\displaystyle Perimeter=4(6)=24\)

Example Question #193 : Squares

Find the perimeter of a square that has side lengths of \(\displaystyle 12\).

Possible Answers:

\(\displaystyle 48\)

\(\displaystyle 60\)

\(\displaystyle 36\)

\(\displaystyle 24\)

Correct answer:

\(\displaystyle 48\)

Explanation:

Use the following formula to find the perimeter of a square:

\(\displaystyle \text{Perimeter}=4(\text{side length})\)

For the given square,

\(\displaystyle \text{Perimeter}=4(12)=48\)

Example Question #10 : How To Find The Perimeter Of A Square

Find the perimeter of a square that has side lengths of \(\displaystyle 0.2\).

Possible Answers:

\(\displaystyle 0.04\)

\(\displaystyle 0.8\)

\(\displaystyle 0.6\)

\(\displaystyle 1\)

Correct answer:

\(\displaystyle 0.8\)

Explanation:

Use the following formula to find the perimeter of a square:

\(\displaystyle \text{Perimeter}=4(\text{side length})\)

For the given square,

\(\displaystyle \text{Perimeter}=4(0.2)=0.8\)

Learning Tools by Varsity Tutors