Calculus 1 : Points of Inflection

Study concepts, example questions & explanations for Calculus 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Points Of Inflection

Find the inflection point(s) of \displaystyle f(x)=x^4-3x^3.

Possible Answers:

\displaystyle \frac{3}{2}

\displaystyle 0, \frac{9}{4}

\displaystyle \frac{9}{4}

\displaystyle 0, \frac{3}{2}

\displaystyle 0

Correct answer:

\displaystyle 0, \frac{3}{2}

Explanation:

Inflection points can only occur when the second derivative is zero or undefined. Here we have

\displaystyle f'(x)=4x^3-9x^2, f''(x)=12x^2-18x=6x(2x-3)

Therefore possible inflection points occur at \displaystyle x=0 and \displaystyle x=\frac{3}{2}. However, to have an inflection point we must check that the sign of the second derivative is different on each side of the point. Here we have

\displaystyle f''(-1)=30, f''(1)=-6, f''(2)=12

Hence, both are inflection points

Example Question #1 : Inflection Points

Below is the graph of \displaystyle f''(x). How many inflection points does \displaystyle f(x) have?Graph1

Possible Answers:

\displaystyle 3

\displaystyle 0

\displaystyle 2

\displaystyle 1

Not enough information

Correct answer:

\displaystyle 2

Explanation:

Possible inflection points occur when \displaystyle f''(x)=0 . This occurs at three values, \displaystyle x=-2, 0, 1. However, to be an inflection point the sign of \displaystyle f''(x) must be different on either side of the critical value. Hence, only \displaystyle x=-2, 1 are critical points.

Example Question #1 : Points Of Inflection

Find the point(s) of inflection for the function \displaystyle y = x^3.

Possible Answers:

\displaystyle x = 0

\displaystyle x = 1.

\displaystyle x= -1 and \displaystyle x = 1

There are no points of inflection.

\displaystyle x = 0 and \displaystyle x = 0

Correct answer:

\displaystyle x = 0

Explanation:

A point of inflection is found where the graph (or image) of a function changes concavity. To find this algebraically, we want to find where the second derivative of the function changes sign, from negative to positive, or vice-versa. So, we find the second derivative of the given function \displaystyle y = x^3. 

The first derivative using the power rule  

\displaystyle y=x^n \rightarrow y'=nx^{n-1} is,

\displaystyle y' = 3x^2 and the seconds derivative is \displaystyle y'' = 6x. 

We then find where this second derivative equals \displaystyle 0\displaystyle 6x = 0 when \displaystyle x = 0.

We then look to see if the second derivative changes signs at this point. Both graphically and algebraically, we can see that the function \displaystyle y'' = 6x does indeed change sign at, and only at, \displaystyle x = 0, so this is our inflection point.

Example Question #1 : Points

Find all the points of inflection of

\displaystyle f(x)=-x^3+x^2-x+1.

Possible Answers:

\displaystyle \frac{1}{3}

There are no inflection points.

\displaystyle 0

\displaystyle \frac{1}{2}

Correct answer:

\displaystyle \frac{1}{3}

Explanation:

In order to find the points of inflection, we need to find \displaystyle f''(x) using the power rule, \displaystyle f(x)=x^n \rightarrow f'(x)=nx^{n-1}.

\displaystyle f(x)=-x^3+x^2-x+1

\displaystyle f'(x)=-3x^2+2x-1

\displaystyle f''(x)=-6x+2

Now we set \displaystyle f''(x)=0, and solve for \displaystyle x.

\displaystyle -6x+2=0

\displaystyle -6x=-2

\displaystyle x=\frac{1}{3}

To verify this is a true inflection point we need to plug in a value that is less than it and a value that is greater than it into the second derivative. If there is a sign change around the  point than it is a true inflection point.

Let \displaystyle x=0

\displaystyle f''(0)=-6(0)+2=2

Now let \displaystyle x=1

\displaystyle f''(1)=-6(1)+2=-4

Since the sign changes from a positive to a negative around the point \displaystyle x=\frac{1}{3}, we can conclude it is an inflection point.

Example Question #1 : Points Of Inflection

Find all the points of inflection of

\displaystyle f(t)=t^4-2t^2+5t+100

Possible Answers:

There are no points of inflection.

\displaystyle \\ t_1=\frac{\sqrt{3}}{3} \\ \\ t_2=0

\displaystyle \\ t_1=0 \\ \\ t_2=-\frac{\sqrt{3}}{3}

\displaystyle \\ t_1=\frac{\sqrt{3}}{3} \\ \\ t_2=-\frac{\sqrt{3}}{3}

Correct answer:

\displaystyle \\ t_1=\frac{\sqrt{3}}{3} \\ \\ t_2=-\frac{\sqrt{3}}{3}

Explanation:

In order to find the points of inflection, we need to find \displaystyle f''(t) using the power rule \displaystyle f(x)=x^n \rightarrow f'(x)=nx^{n-1}.

\displaystyle f(t)=t^4-2t^2+5t+100

\displaystyle f'(t)=4t^3-4t+5

\displaystyle f''(t)=12t^2-4

Now to find the points of inflection, we need to set \displaystyle f''(t)=0.

\displaystyle 12t^2-4=0.

Now we can use the quadratic equation.

Recall that the quadratic equation is

\displaystyle t=\frac{-b\pm\sqrt{b^2-4ac}}{2a},

where a,b,c refer to the coefficients of the equation  \displaystyle at^2+bt+c=0.

 

In this case, a=12, b=0, c=-4.

 

\displaystyle t=\frac{-0\pm\sqrt{0^2-4(12)(-4)}}{(2)(12)}

\displaystyle t=\frac{\pm\sqrt{192}}{24}=\frac{\pm8\sqrt{3}}{24}=\frac{\pm\sqrt{3}}{3}

Thus the possible points of infection are

\displaystyle t_1=\frac{\sqrt{3}}{3}

\displaystyle t_2=-\frac{\sqrt{3}}{3}.

Now to check if or which are inflection points we need to plug in a value higher and lower than each point. If there is a sign change then the point is an inflection point.

To check \displaystyle t_1 lets plug in \displaystyle x=0, x=1.

\displaystyle f''(0)=12(0)^2-4=-4

\displaystyle f''(1)=12(1)^2-4=8

Therefore \displaystyle t_1 is an inflection point. 

Now lets check \displaystyle t_2 with \displaystyle x=0, x=-1.

\displaystyle f''(0)=12(0)^2-4=-4

\displaystyle f''(-1)=12(-1)^2-4=8

Therefore \displaystyle t_2 is also an inflection point. 

Example Question #1 : Points Of Inflection

Find all the points of infection of

\displaystyle f(t)=t^5-3t^3+2t+100.

Possible Answers:

\displaystyle \\ t_1=0

\displaystyle \\ t_1=0 \\ \\ t_2=\frac{3\sqrt{10}}{10} \\ \\ t_3=-\frac{3\sqrt{10}}{10}

\displaystyle \\ \\ t_1=\frac{3\sqrt{10}}{10} \\ \\ t_2=-\frac{3\sqrt{10}}{10}

There are no points of inflection.

Correct answer:

\displaystyle \\ t_1=0 \\ \\ t_2=\frac{3\sqrt{10}}{10} \\ \\ t_3=-\frac{3\sqrt{10}}{10}

Explanation:

In order to find the points of inflection, we need to find \displaystyle f''(t) using the power rule \displaystyle f(x)=x^n \rightarrow f'(x)=nx^{n-1}.

\displaystyle f(t)=t^5-3t^3+2t+100

\displaystyle f'(t)=5t^4-9t^2+2

\displaystyle f''(t)=20t^3-18t

Now lets factor \displaystyle f''(t).

\displaystyle f''(t)=t(20t^2-18)

Now to find the points of inflection, we need to set \displaystyle f''(t)=0.

\displaystyle t(20t^2-18)=0.

From this equation, we already know one of the point of inflection, \displaystyle t_1=0.

To figure out the rest of the points of inflection we can use the quadratic equation.

Recall that the quadratic equation is

\displaystyle t=\frac{-b\pm\sqrt{b^2-4ac}}{2a}, where a,b,c refer to the coefficients of the equation

 

\displaystyle at^2+bt+c=0.

 

In this case, a=20, b=0, c=-18.

 

\displaystyle t=\frac{-0\pm\sqrt{0^2-4(20)(-18)}}{(2)(20)}

\displaystyle t=\frac{\pm\sqrt{1440}}{40}=\frac{\pm12\sqrt{10}}{40}=\frac{\pm3\sqrt{10}}{10}

Thus the other 2 points of infection are

\displaystyle t_2=\frac{3\sqrt{10}}{10}

\displaystyle t_3=-\frac{3\sqrt{10}}{10}

To verify that they are all inflection points we need to plug in values higher and lower than each value and see if the sign changes.

Lets plug in \displaystyle x=-1, x=-\frac{1}{2}, x=\frac{1}{2}, x=1 

\displaystyle f''(-1)=20(-1)^3-18(-1)=-2

\displaystyle f''\left(-\frac{1}{2}\right)=20\left(-\frac{1}{2} \right )^3-18\left(-\frac{1}{2} \right )=6.5

\displaystyle f''\left(\frac{1}{2}\right)=20\left(\frac{1}{2} \right )^3-18\left(\frac{1}{2} \right )=-6.5

\displaystyle f''(1)=20(1)^3-18(1)=2

Since there is a sign change at each point, all are points of inflection.

Example Question #7 : Points Of Inflection

Find the points of inflection of

\displaystyle f(x)=x^2-2x+1.

Possible Answers:

\displaystyle x=2

\displaystyle x=1

There are no points of inflection.

\displaystyle x=0

Correct answer:

There are no points of inflection.

Explanation:

In order to find the points of inflection, we need to find \displaystyle f''(x)

\displaystyle f(x)=x^2-2x+1

\displaystyle f'(x)=2x-2

\displaystyle f''(x)=2

Now we set \displaystyle f''(x)=0.

\displaystyle 0=2.

This last statement says that \displaystyle f''(x) will never be \displaystyle 0. Thus there are no points of inflection.

 

Example Question #8 : Points Of Inflection

Find the points of inflection of the following function:

\displaystyle f(x)=x^3+2x^2+x

Possible Answers:

\displaystyle -1, -\frac{1}{3}

\displaystyle -\frac{2}{3}

\displaystyle \frac{2}{3}

\displaystyle -\frac{2}{3}, \frac{1}{3}

Correct answer:

\displaystyle -\frac{2}{3}

Explanation:

The points of inflection of a given function are the values at which the second derivative of the function are equal to zero.

The first derivative of the function is 

\displaystyle f{}'(x)=3x^2+4x+1, and the derivative of this function (the second derivative of the original function), is 

\displaystyle f''(x)=6x+4.

Both derivatives were found using the power rule 

\displaystyle \frac{d}{dx}x^n=nx^{n-1}

Solving \displaystyle 0=6x+4\displaystyle x=-\frac{2}{3}.

 

To verify that this point is a true inflection point we need to plug in a value that is less than the point and one that is greater than the point into the second derivative. If there is a sign change between the two numbers than the point in question is an inflection point.

Lets plug in \displaystyle {}x=-1

\displaystyle 6(-1)+4=-2.

Now plug in \displaystyle {}x=0

\displaystyle 6(0)+4=4.

Therefore, \displaystyle x=-\frac{2}{3} is the only point of inflection of the function.

Example Question #1 : How To Graph Functions Of Points Of Inflection

Find all the points of inflection of

\displaystyle f(x)=x^4+3x^3-4x+1.

Possible Answers:

\displaystyle \\ x=0 \\ \\ x=-\frac{3}{2}

\displaystyle x=-\frac{3}{2}

\displaystyle \\ x=0 \\ \\ x=\frac{3}{2}

\displaystyle x=1

\displaystyle \\ x=0

Correct answer:

\displaystyle \\ x=0 \\ \\ x=-\frac{3}{2}

Explanation:

In order to find all the points of inflection, we first find \displaystyle f''(x) using the power rule twice, \displaystyle f(x)=x^n \rightarrow f'(x)=nx^{n-1}.

\displaystyle f(x)=x^4+3x^3-4x+1

\displaystyle f'(x)=4x^3+9x^2-4

\displaystyle f''(x)=12x^2+18x

Now we set \displaystyle f''(x)=0.

\displaystyle 12x^2+18x=0.

Now we factor the left hand side.

\displaystyle x(12x+18)=0

From this, we see that there is one point of inflection at \displaystyle x=0.

For the point of inflection, lets solve for x for the equation inside the parentheses. 

\displaystyle \\ 12x+18=0 \\ \\ 12x=-18 \\ \\ x=-\frac{18}{12}=-\frac{3}{2}

 

 

Example Question #10 : Points Of Inflection

 Find all the points of inflection of:

\displaystyle f(x)=x^4-x^2+100

Possible Answers:

\displaystyle \\ x=\frac{1}{\sqrt{6}}

\displaystyle x=-\frac{1}{\sqrt{6}}

There are no points of inflection.

\displaystyle x=5

\displaystyle \\ x=\frac{1}{\sqrt{6}} \\ \\ x=-\frac{1}{\sqrt{6}}

Correct answer:

\displaystyle \\ x=\frac{1}{\sqrt{6}} \\ \\ x=-\frac{1}{\sqrt{6}}

Explanation:

 In order to find all the points of inflection, we first find \displaystyle f''(x) using the power rule twice \displaystyle f(x)=x^n \rightarrow f'(x)=nx^{n-1}.

\displaystyle f(x)=x^4-x^2+100

\displaystyle f'(x)=4x^3-2x

\displaystyle f''(x)=12x^2-2

Now we set \displaystyle f''(x)=0.

\displaystyle 12x^2-2=0

\displaystyle \\ 12x^2=2 \\ \\ x^2=\frac{1}{6} \\ \\ x=\pm\sqrt{\frac{1}{6}}=\pm\frac{1}{\sqrt{6}}

Thus the points of inflection are  \displaystyle x=\frac{1}{\sqrt{6}} and \displaystyle x=-\frac{1}{\sqrt{6}}

 

 

Learning Tools by Varsity Tutors