# Calculus 3 : Binormal Vectors

## Example Questions

### Example Question #1 : Binormal Vectors

Find the binormal vector of .

Does not exist.

Explanation:

To find the binormal vector, you must first find the unit tangent vector, then the unit normal vector.

The equation for the unit tangent vector, ,  is

where  is the vector and  is the magnitude of the vector.

The equation for the unit normal vector,,  is

where  is the derivative of the unit tangent vector and  is the magnitude of the derivative of the unit vector.

The binormal vector is the cross product of unit tangent and unit normal vectors, or

For this problem

### Example Question #2 : Binormal Vectors

Find the binormal vector of .

Does not exist

Explanation:

To find the binormal vector, you must first find the unit tangent vector, then the unit normal vector.

The equation for the unit tangent vector, ,  is

where  is the vector and  is the magnitude of the vector.

The equation for the unit normal vector,,  is

where  is the derivative of the unit tangent vector and  is the magnitude of the derivative of the unit vector.

For this problem

### Example Question #3 : Binormal Vectors

Find the binormal vector for: