Calculus 3 : Cross Product

Study concepts, example questions & explanations for Calculus 3

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Cross Product

Let \(\displaystyle u=(2,4,5)\), and \(\displaystyle v=(-2,6,10)\).

Find \(\displaystyle u\times v\).

Possible Answers:

\(\displaystyle u\times v=(10,-30,20)\)

\(\displaystyle u\times v=(40,-20,12)\)

\(\displaystyle u\times v=(10,30,20)\)

\(\displaystyle u\times v=(0,-3,2)\)

\(\displaystyle u\times v=(-10,30,-20)\)

Correct answer:

\(\displaystyle u\times v=(10,-30,20)\)

Explanation:

We are trying to find the cross product between \(\displaystyle u\) and \(\displaystyle v\).

Recall the formula for cross product.

If  \(\displaystyle u=(u_x,u_y,u_z)\), and \(\displaystyle v=(v_x,v_y,v_z)\), then

\(\displaystyle u\times v=(u_yv_z-u_zv_y, -u_xv_z+u_zv_x, u_xv_y-u_yv_x)\).

Now apply this to our situation.

\(\displaystyle u\times v=(4(10)-5(6),-2(10)+5(-2), 2(6)-4(-2))\)

\(\displaystyle u\times v=(40-30,-20-10, 12+8)\)

\(\displaystyle u\times v=(10,-30,20)\)

Example Question #1 : Cross Product

Let \(\displaystyle u=(1,0,1)\), and \(\displaystyle v=(0,0,1)\).

Find \(\displaystyle u\times v\).

Possible Answers:

\(\displaystyle u\times v=(0,0,-1)\)

\(\displaystyle u\times v=(0,1,0)\)

\(\displaystyle u\times v=(0,0,0)\)

\(\displaystyle u\times v=(0,-1,0)\)

\(\displaystyle u\times v=(-1,0,0)\)

Correct answer:

\(\displaystyle u\times v=(0,-1,0)\)

Explanation:

We are trying to find the cross product between \(\displaystyle u\) and \(\displaystyle v\).

Recall the formula for cross product.

If  \(\displaystyle u=(u_x,u_y,u_z)\), and \(\displaystyle v=(v_x,v_y,v_z)\), then

\(\displaystyle u\times v=(u_yv_z-u_zv_y, -u_xv_z+u_zv_x, u_xv_y-u_yv_x)\).

Now apply this to our situation.

\(\displaystyle u\times v=(0(1)-1(0),-1(1)+1(0), 1(0)-0(0))\)

\(\displaystyle u\times v=(0-0,-1+0, 0-0)\)

\(\displaystyle u\times v=(0,-1,0)\)

Example Question #3 : Cross Product

True or False: The cross product can only be taken of two 3-dimensional vectors.

Possible Answers:

False

True

Correct answer:

True

Explanation:

This is true. The cross product is defined this way. The dot product however can be taken for two vectors of dimension n (provided that both vectors are the same dimension).

Example Question #1 : Cross Product

Which of the following choices is true?

Possible Answers:

\(\displaystyle \begin{matrix}\vec{A}\cdot \vec{B}=\vec{B}\cdot \vec{A}, & & \vec{A} \times \vec{B}= \vec{B}\times \vec{A} \end{matrix}\)

\(\displaystyle \begin{matrix}\vec{A}\cdot \vec{B}=-\vec{B}\cdot \vec{A}, & & \vec{A} \times \vec{B}= - \vec{B}\times \vec{A} \end{matrix}\)

\(\displaystyle \begin{matrix}\vec{A}\cdot \vec{B}=\vec{B}\cdot \vec{A}, & & \vec{A} \times \vec{B}= - \vec{B}\times \vec{A} \end{matrix}\)

\(\displaystyle \begin{matrix}\vec{A}\cdot \vec{B}=-\vec{B}\cdot \vec{A}, & & \vec{A} \times \vec{B}= \vec{B}\times \vec{A} \end{matrix}\)

Correct answer:

\(\displaystyle \begin{matrix}\vec{A}\cdot \vec{B}=\vec{B}\cdot \vec{A}, & & \vec{A} \times \vec{B}= - \vec{B}\times \vec{A} \end{matrix}\)

Explanation:

By definition, the order of the dot product of two vectors does not matter, as the final output is a scalar.  However, the cross product of two vectors will change signs depending on the order that they are crossed.  Therefore 

\(\displaystyle \begin{matrix}\vec{A}\cdot \vec{B}=\vec{B}\cdot \vec{A}, & & \vec{A} \times \vec{B}= - \vec{B}\times \vec{A} \end{matrix}\).

Example Question #1 : Cross Product

For what angle(s) is the cross product \(\displaystyle \vec{A} \times \vec{B}=0\)?

Possible Answers:

\(\displaystyle 0 ^{\circ}, 180 ^{\circ}, 360 ^{\circ}\)

\(\displaystyle 270^{\circ}\)

\(\displaystyle 45 ^{\circ}\)

\(\displaystyle 30^{\circ}\)

\(\displaystyle 90^{\circ}\)

Correct answer:

\(\displaystyle 0 ^{\circ}, 180 ^{\circ}, 360 ^{\circ}\)

Explanation:

We have the following equation that relates the cross product of two vectors \(\displaystyle \vec{A} \times \vec{B}\) to the relative angle between them \(\displaystyle \theta\), written as

\(\displaystyle \frac{\vec{A} \times \vec{B}}{\left| \vec{A} \right| \left| \vec{B} \right|}= \sin \theta\).

From this, we can see that the numerator, or cross product, will be \(\displaystyle 0\) whenever \(\displaystyle \sin \theta=0\).  This will be true for all even multiples of \(\displaystyle \frac{\pi}{2}\).  Therefore, we find that the cross product of two vectors will be \(\displaystyle 0\) for \(\displaystyle \theta = 0(0^{\circ}), \pi (180^{\circ}), 2\pi (360^{\circ})\).

Example Question #1 : Cross Product

Evaluate \(\displaystyle < 1,0> \times < 0,8>\)

Possible Answers:

\(\displaystyle < 0,0>\)

\(\displaystyle < 0,8>\)

None of the other answers

\(\displaystyle < 0,0,0>\)

\(\displaystyle < 0>\)

Correct answer:

None of the other answers

Explanation:

It is not possible to take the cross product of \(\displaystyle 2\)-component vectors. The definition of the cross product states that the two vectors must each have \(\displaystyle 3\) components. So the above problem is impossible.

Example Question #7 : Cross Product

 Compute \(\displaystyle < 1,0,4> \times < 1,1,1>\).

Possible Answers:

\(\displaystyle < 3,4,-1>\)

\(\displaystyle < -3,-4,1>\)

\(\displaystyle < 0,0,0>\)

\(\displaystyle < 4,-3,-1>\)

\(\displaystyle < -4,3,1>\)

Correct answer:

\(\displaystyle < -4,3,1>\)

Explanation:

To evaluate the cross product, we use the determinant formula

\(\displaystyle \mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1& a_2 & a_3 \\ b_1& b_2 & b_3 \end{vmatrix}\)

So we have

 

\(\displaystyle < 1,0,4> \times < 1,1,1>\)

\(\displaystyle = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1& 0 & 4 \\ 1& 1 & 1 \end{vmatrix}\)

\(\displaystyle = \begin{vmatrix} 0 & 4 \\ 1 & 1 \end{vmatrix} \mathbf{i} -\begin{vmatrix} 1 & 4 \\ 1& 1 \end{vmatrix} \mathbf{j} + \begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix} \mathbf{k}\). (Use cofactor expansion along the top row. This is typically done when taking any cross products)

\(\displaystyle = -4\mathbf{i}-(-3)\mathbf{j}+1\mathbf{k}\)

\(\displaystyle = < -4,3,1>\)

 

Example Question #1 : Cross Product

Evaluate \(\displaystyle < 1,1,0> \times < 8,0,8>\).

Possible Answers:

\(\displaystyle < -8,8,8>\)

None of the other answers

\(\displaystyle < 1,1,-1>\)

\(\displaystyle < -1,-1,1>\)

\(\displaystyle < 8,-8,-8>\)

Correct answer:

\(\displaystyle < 8,-8,-8>\)

Explanation:

To evaluate the cross product, we use the determinant formula

\(\displaystyle \mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1& a_2 & a_3 \\ b_1& b_2 & b_3 \end{vmatrix}\)

So we have

 

\(\displaystyle < 1,1,0> \times < 8,0,8>\)

\(\displaystyle = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1& 1 & 0 \\ 8& 0 & 8 \end{vmatrix}\)

\(\displaystyle = \begin{vmatrix} 1 & 0 \\ 0 & 8 \end{vmatrix} \mathbf{i} -\begin{vmatrix} 1 & 0 \\ 8& 8 \end{vmatrix} \mathbf{j} + \begin{vmatrix} 1 & 1 \\ 8 & 0 \end{vmatrix} \mathbf{k}\). (Use cofactor expansion along the top row. This is typically done when taking any cross products)

\(\displaystyle = 8\mathbf{i}-(8)\mathbf{j}+(-8)\mathbf{k}\)

\(\displaystyle = < 8,-8,-8>\)

 

Example Question #1 : Cross Product

Find the cross product of the two vectors. 

\(\displaystyle u=< 4,3,7>\)

\(\displaystyle v=< 5,7,10>\)

Possible Answers:

\(\displaystyle < 20,21,70>\)

\(\displaystyle < -1,-4,-3>\)

\(\displaystyle < -19,-5,13>\)

\(\displaystyle < 9,10,17>\)

Correct answer:

\(\displaystyle < -19,-5,13>\)

Explanation:

To find the cross product, we solve for the determinant of the matrix

\(\displaystyle \begin{vmatrix} i&j &k \\ 4&3 &7 \\ 5&7 &10 \end{vmatrix}\)

The determinant equals

\(\displaystyle =det(\begin{vmatrix} 3&7 \\ 7&10 \end{vmatrix})i-det(\begin{vmatrix} 4&7 \\ 5&10 \end{vmatrix})j+det(\begin{vmatrix} 4&3 \\ 5&7 \end{vmatrix})k\)

\(\displaystyle =(3*10-7*7)i-(4*10-5*7)j+(4*7-5*3)k\)

\(\displaystyle =-19i-5j+13k\)

\(\displaystyle =< -19,-5,13>\)

As the cross-product.

Example Question #1 : Cross Product

Find the cross product of the two vectors. 

\(\displaystyle u=< 1,0,0>\)

\(\displaystyle v=< 0,1,0>\)

Possible Answers:

\(\displaystyle < 0,0,1>\)

\(\displaystyle < 1,-1,0>\)

\(\displaystyle < 1,1,0>\)

\(\displaystyle < 0,0,0>\)

Correct answer:

\(\displaystyle < 0,0,1>\)

Explanation:

To find the cross product, we solve for the determinant of the matrix

\(\displaystyle \begin{vmatrix} i&j &k \\ 1&0 &0 \\ 0&1 &0 \end{vmatrix}\)

The determinant equals

\(\displaystyle =det(\begin{vmatrix} 0&0 \\ 1&0 \end{vmatrix})i-det(\begin{vmatrix} 1&0 \\ 0&0 \end{vmatrix})j+det(\begin{vmatrix} 1&0 \\ 0&1 \end{vmatrix})k\)

\(\displaystyle =(0*0-1*0)i-(1*0-0*0)j+(1*1-0*0)k\)

\(\displaystyle =0i-0j+1k\)

\(\displaystyle =< 0,0,1>\)

As the cross-product.

Learning Tools by Varsity Tutors