Common Core: 1st Grade Math : Knowing How and When to Subtract

Study concepts, example questions & explanations for Common Core: 1st Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #891 : Operations & Algebraic Thinking

\(\displaystyle \frac{\begin{array}[b]{r}20\\ -\ 14\end{array}}{ \ \ \ \ \ \space?}\)

Possible Answers:

\(\displaystyle 9\)

\(\displaystyle 8\)

\(\displaystyle 7\)

\(\displaystyle 6\)

\(\displaystyle 10\)

Correct answer:

\(\displaystyle 6\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 20\) and count back \(\displaystyle 14.\)

\(\displaystyle 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6\)

\(\displaystyle \frac{\begin{array}[b]{r}20\\ -\ 14\end{array}}{ \ \ \ \ \ \space6}\)

Example Question #761 : Numbers And Operations

\(\displaystyle \frac{\begin{array}[b]{r}3\\ -\ 2\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 1\)

\(\displaystyle 5\)

\(\displaystyle 2\)

\(\displaystyle 3\)

\(\displaystyle 4\)

Correct answer:

\(\displaystyle 1\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 3\) and count back \(\displaystyle 2\).

\(\displaystyle 3, 2, 1\)

\(\displaystyle \frac{\begin{array}[b]{r}3\\ -\ 2\end{array}}{ \ \ \ \space 1}\)

Example Question #891 : Operations & Algebraic Thinking

\(\displaystyle \frac{\begin{array}[b]{r}2\\ -\ 2\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 1\)

\(\displaystyle 4\)

\(\displaystyle 3\)

\(\displaystyle 2\)

\(\displaystyle 0\)

Correct answer:

\(\displaystyle 0\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 2\) and count back \(\displaystyle 2\).

\(\displaystyle 2, 1, 0\)

\(\displaystyle \frac{\begin{array}[b]{r}2\\ -\ 2\end{array}}{ \ \ \ \space 0}\)

Example Question #1465 : Common Core Math: Grade 1

\(\displaystyle \frac{\begin{array}[b]{r}20\\ -\ 18\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 0\)

\(\displaystyle 4\)

\(\displaystyle 3\)

\(\displaystyle 1\)

\(\displaystyle 2\)

Correct answer:

\(\displaystyle 2\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 20\) and count back \(\displaystyle 18\).

\(\displaystyle 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2\)

\(\displaystyle \frac{\begin{array}[b]{r}20\\ -\ 18\end{array}}{ \ \ \ \ \ \space 2}\)

Example Question #1466 : Common Core Math: Grade 1

\(\displaystyle \frac{\begin{array}[b]{r}4\\ -\ 3\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 2\)

\(\displaystyle 4\)

\(\displaystyle 3\)

\(\displaystyle 5\)

\(\displaystyle 1\)

Correct answer:

\(\displaystyle 1\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 4\) and count back \(\displaystyle 3\).

\(\displaystyle 4, 3, 2, 1,\)

\(\displaystyle \frac{\begin{array}[b]{r}4\\ -\ 3\end{array}}{ \ \ \ \space 1}\)

Example Question #1 : Knowing How And When To Subtract

\(\displaystyle \frac{\begin{array}[b]{r}20\\ -\ 4\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 15\)

\(\displaystyle 13\)

\(\displaystyle 17\)

\(\displaystyle 14\)

\(\displaystyle 16\)

Correct answer:

\(\displaystyle 16\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 20\) and count back \(\displaystyle 4.\)

\(\displaystyle 20, 19, 18, 17, 16\)

\(\displaystyle \frac{\begin{array}[b]{r}20\\ -\ 4\end{array}}{ \ \ \space 16}\)

Example Question #771 : Numbers And Operations

\(\displaystyle \frac{\begin{array}[b]{r}19\\ -\ 6\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 13\)

\(\displaystyle 14\)

\(\displaystyle 16\)

\(\displaystyle 17\)

\(\displaystyle 15\)

Correct answer:

\(\displaystyle 13\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 19\) and count back \(\displaystyle 6\).

\(\displaystyle 19, 18, 17, 16, 15, 14, 13\)

\(\displaystyle \frac{\begin{array}[b]{r}19\\ -\ 6\end{array}}{ \ \ \space 13}\)

Example Question #1461 : Common Core Math: Grade 1

\(\displaystyle \frac{\begin{array}[b]{r}18\\ -\ 3\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 13\)

\(\displaystyle 15\)

\(\displaystyle 14\)

\(\displaystyle 11\)

\(\displaystyle 10\)

Correct answer:

\(\displaystyle 15\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 18\) and count back \(\displaystyle 3\).

\(\displaystyle 18, 17, 16, 15\)

\(\displaystyle \frac{\begin{array}[b]{r}18\\ -\ 3\end{array}}{ \ \ \space15}\)

Example Question #772 : Numbers And Operations

\(\displaystyle \frac{\begin{array}[b]{r}17\\ -\ 14\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 2\)

\(\displaystyle 3\)

\(\displaystyle 5\)

\(\displaystyle 1\)

\(\displaystyle 4\)

Correct answer:

\(\displaystyle 3\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 17\) and count back \(\displaystyle 14.\)

\(\displaystyle 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3\)

\(\displaystyle \frac{\begin{array}[b]{r}17\\ -\ 14\end{array}}{ \ \ \ \ \ \space 3}\)

Example Question #773 : Numbers And Operations

\(\displaystyle \frac{\begin{array}[b]{r}16\\ -\ 6\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 11\)

\(\displaystyle 10\)

\(\displaystyle 7\)

\(\displaystyle 9\)

\(\displaystyle 8\)

Correct answer:

\(\displaystyle 10\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 16\) and count back \(\displaystyle 6\).

\(\displaystyle 16, 15, 14, 13, 12, 11, 10\)

\(\displaystyle \frac{\begin{array}[b]{r}16\\ -\ 6\end{array}}{ \ \ \space 10}\)

Learning Tools by Varsity Tutors