Common Core: 2nd Grade Math : Solve Word Problems Involving Money: CCSS.Math.Content.2.MD.C.8

Study concepts, example questions & explanations for Common Core: 2nd Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #423 : Isee Lower Level (Grades 5 6) Quantitative Reasoning

If I have \displaystyle 3 dimes and \displaystyle 2 pennies, how many cents do I have? 

Possible Answers:

\displaystyle 15\cent

\displaystyle 6\cent

\displaystyle 5\cent

\displaystyle 25\cent

\displaystyle 32\cent

Correct answer:

\displaystyle 32\cent

Explanation:

Each dime is worth \displaystyle 10\cent and each penny is worth \displaystyle 1\cent

We have three dimes and two pennies. 

 \displaystyle \frac{\begin{array}[b]{r}10\cent\\ \ 10\cent\\ +\ 10\cent\end{array}}{ \ \ \ \space 30\cent}  \displaystyle \frac{\begin{array}[b]{r}1\cent\\ +\ 1\cent\end{array}}{ \ \ \ \space 2\cent}

\displaystyle \frac{\begin{array}[b]{r}30\cent\\ +\ 2\cent\end{array}}{ \ \ \space 32\cent}

Example Question #424 : Isee Lower Level (Grades 5 6) Quantitative Reasoning

If I have \displaystyle 5 dimes and \displaystyle 2 pennies, how many cents do I have? 

Possible Answers:

\displaystyle 55\cent

\displaystyle 51\cent

\displaystyle 53\cent

\displaystyle 54\cent

\displaystyle 52\cent

Correct answer:

\displaystyle 52\cent

Explanation:

Each dime is worth \displaystyle 10\cent and each penny is worth \displaystyle 1\cent.

We have five dimes and two pennies. 

\displaystyle \frac{\begin{array}[b]{r}10\cent\\ \ 10\cent\\ 10\cent\\ \ 10\cent\\+\ 10\cent\end{array}}{ \ \ \ \space 50\cent} \displaystyle \frac{\begin{array}[b]{r}1\cent\\ +\ 1\cent\end{array}}{ \ \ \ \space 2\cent}

\displaystyle \frac{\begin{array}[b]{r}50\cent\\ +\ 2\cent\end{array}}{ \ \ \space 52\cent}

Example Question #425 : Isee Lower Level (Grades 5 6) Quantitative Reasoning

If I have \displaystyle 1 quarter and \displaystyle 3 nickels, how many cents do I have?

Possible Answers:

\displaystyle 60\cent

\displaystyle 40\cent

\displaystyle 45\cent

\displaystyle 50\cent

\displaystyle 55\cent

Correct answer:

\displaystyle 40\cent

Explanation:

Each quarter is worth \displaystyle 25\cent and each nickel is worth \displaystyle 5\cent.

We have one quarter and three nickels.

 \displaystyle 25\cent \displaystyle \frac{\begin{array}[b]{r}5\cent\\ \ 5\cent\\ +\ 5\cent\end{array}}{ \ \ \space 15\cent}

\displaystyle \frac{\begin{array}[b]{r}25\cent\\ +\ 15\cent\end{array}}{ \ \ \ \space 40\cent}

Example Question #426 : Isee Lower Level (Grades 5 6) Quantitative Reasoning

If I have \displaystyle 3 nickels and \displaystyle 4 dimes, how many cents do I have? 

Possible Answers:

\displaystyle 7\cent

\displaystyle 20\cent

\displaystyle 12\cent

\displaystyle 55\cent

\displaystyle 14\cent

Correct answer:

\displaystyle 55\cent

Explanation:

Each nickel is worth \displaystyle 5\cent and each dime is worth \displaystyle 10\cent.

We have three nickels and four dimes.

 \displaystyle \frac{\begin{array}[b]{r}5\cent\\ \ 5\cent\\ +\ 5\cent\end{array}}{ \ \ \space 15\cent} \displaystyle \frac{\begin{array}[b]{r}10\cent\\ \ 10\cent\\10\cent\\ \ +\ 10\cent\end{array}}{ \ \ \ \space 40\cent}

\displaystyle \frac{\begin{array}[b]{r}15\cent\\ +\ 40\cent\end{array}}{ \ \ \ \space 55\cent}

Example Question #171 : How To Add

If I have \displaystyle 3 pennies and \displaystyle 2 quarters, how many cents do I have? 

Possible Answers:

\displaystyle 15\cent

\displaystyle 22\cent

\displaystyle 42\cent

\displaystyle 5\cent

\displaystyle 53\cent

Correct answer:

\displaystyle 53\cent

Explanation:

Each penny is worth \displaystyle 1\cent and each quarter is worth \displaystyle 25\cent.

We have three pennies and two quarters. 

\displaystyle \frac{\begin{array}[b]{r}1\cent\\ \ 1\cent\\ +\ 1\cent\end{array}}{ \ \ \ \space 3\cent} \displaystyle \frac{\begin{array}[b]{r}25\cent\\ +\ 25\cent\end{array}}{ \ \ \ \space 50\cent}

\displaystyle \frac{\begin{array}[b]{r}3\cent\\ +\ 50\cent\end{array}}{ \ \ \ \space 53\cent}

Example Question #172 : How To Add

If I have \displaystyle 6 pennies and \displaystyle 4 nickels, how many cents do I have? 

Possible Answers:

\displaystyle 10\cent

\displaystyle 40\cent

\displaystyle 24\cent

\displaystyle 32\cent

\displaystyle 26\cent

Correct answer:

\displaystyle 26\cent

Explanation:

Each penny is worth \displaystyle 1\cent and each nickel is worth \displaystyle 5\cent.

We have six pennies and four nickels. 

\displaystyle \frac{\begin{array}[b]{r}1\cent\\ \ 1\cent\\ 1\cent\\ \ 1\cent\\ 1\cent\\ +\ 1\cent\end{array}}{ \ \ \ \space 6\cent} \displaystyle \frac{\begin{array}[b]{r}5\cent\\ \ 5\cent\\ 5\cent\\ +\ 5\cent\end{array}}{ \ \ \space 20\cent}

\displaystyle \frac{\begin{array}[b]{r}6\cent\\ +\ 20\cent\end{array}}{ \ \ \ \space 26\cent}

Example Question #173 : How To Add

If I have \displaystyle 2 dimes and \displaystyle 2 nickels, how many cents do I have? 

Possible Answers:

\displaystyle 30\cent

\displaystyle 60\cent

\displaystyle 20\cent

\displaystyle 50\cent

\displaystyle 40\cent

Correct answer:

\displaystyle 30\cent

Explanation:

Each dime is worth \displaystyle 10\cent and each nickel is worth \displaystyle 5\cent.

We have two dimes and two nickels. 

\displaystyle \frac{\begin{array}[b]{r}10\cent\\ +\ 10\cent\end{array}}{ \ \ \ \space 20\cent} \displaystyle \frac{\begin{array}[b]{r}5\cent\\ +\ 5\cent\end{array}}{ \ \ \space 10\cent}

\displaystyle \frac{\begin{array}[b]{r}20\cent\\ +\ 10\cent\end{array}}{ \ \ \ \space 30\cent}

 

Example Question #174 : How To Add

If I have \displaystyle 3 quarters and \displaystyle 3 pennies, how many cents do I have? 

Possible Answers:

\displaystyle 75\cent

\displaystyle 9\cent

\displaystyle 35\cent

\displaystyle 6\cent

\displaystyle 78\cent

Correct answer:

\displaystyle 78\cent

Explanation:

Each quarter is worth \displaystyle 25\cent and each penny is worth \displaystyle 1\cent.

We have three quarters and three pennies. 

\displaystyle \frac{\begin{array}[b]{r}25\cent\\ \ 25\cent\\ +\ 25\cent\end{array}}{ \ \ \ \space 75\cent} \displaystyle \frac{\begin{array}[b]{r}1\cent\\ \ 1\cent\\ +\ 1\cent\end{array}}{ \ \ \ \space 3\cent}

\displaystyle \frac{\begin{array}[b]{r}75\cent\\ +\ 3\cent\end{array}}{ \ \ \space 78\cent}

Example Question #1231 : Ssat Elementary Level Quantitative (Math)

If I have \displaystyle 4 nickels and \displaystyle 3 dimes, how many cents do I have? 

Possible Answers:

\displaystyle 50\cent

\displaystyle 17\cent

\displaystyle 35\cent

\displaystyle 7\cent

\displaystyle 12\cent

Correct answer:

\displaystyle 50\cent

Explanation:

Each nickel is worth \displaystyle 5\cent and each dime is worth \displaystyle 10\cent.

We have four nickels and three dimes. 

\displaystyle \frac{\begin{array}[b]{r}5\cent\\ \ 5\cent\\5\cent\\ +\ 5\cent\end{array}}{ \ \ \ \space 20\cent} \displaystyle \frac{\begin{array}[b]{r}10\cent\\ \ 10\cent\\ +\ 10\cent\end{array}}{ \ \ \ \space 30\cent}

\displaystyle \frac{\begin{array}[b]{r}20\cent\\ +\ 30\cent\end{array}}{ \ \ \ \space 50\cent}

Example Question #1232 : Ssat Elementary Level Quantitative (Math)

If I have \displaystyle 2 quarters and \displaystyle 2 pennies, how many cents do I have? 

Possible Answers:

\displaystyle 60\cent

\displaystyle 52\cent

\displaystyle 24\cent

\displaystyle 4\cent

\displaystyle 20\cent

Correct answer:

\displaystyle 52\cent

Explanation:

Each quarter is worth \displaystyle 25\cent and each penny is worth \displaystyle 1\cent.

We have two quarters and two pennies. 

\displaystyle \frac{\begin{array}[b]{r}25\cent\\ +\ 25\cent\end{array}}{ \ \ \ \space 50\cent} \displaystyle \frac{\begin{array}[b]{r}1\cent\\ +\ 1\cent\end{array}}{ \ \ \ \space 2\cent}

\displaystyle \frac{\begin{array}[b]{r}50\cent\\ +\ 2\cent\end{array}}{ \ \ \space 52\cent}

 

Learning Tools by Varsity Tutors