Common Core: 5th Grade Math : Fluently Multiply Multi-Digit Whole Numbers: CCSS.Math.Content.5.NBT.B.5

Study concepts, example questions & explanations for Common Core: 5th Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Fluently Multiply Multi Digit Whole Numbers: Ccss.Math.Content.5.Nbt.B.5

\displaystyle 45\times 5=

\displaystyle 36\times 3=

Possible Answers:

\displaystyle 45\times5=215,\ 36\times3=109

\displaystyle 45\times5=220,\ 36\times3=118

\displaystyle 45\times5=225,\ 36\times3=208

\displaystyle 45\times5=225,\ 36\times3=108

\displaystyle 45\times5=215,\ 36\times3=108

Correct answer:

\displaystyle 45\times5=225,\ 36\times3=108

Explanation:

 

 

 

Example Question #2 : Fluently Multiply Multi Digit Whole Numbers: Ccss.Math.Content.5.Nbt.B.5

Solve:

\displaystyle \frac{\begin{array}[b]{r}1 3\\ \times\ 11\end{array}}{\ \ \ \ }

Possible Answers:

\displaystyle 113

\displaystyle 164

\displaystyle 133

\displaystyle 143

\displaystyle 130

Correct answer:

\displaystyle 143

Explanation:

In order to solve this problem using multiplication, we must multiply each digit of the multiplier by each digit of the multiplicand to get the answer, which is called the product.

\displaystyle \frac{\begin{array}[b]{r}\textup{multiplicand}\\ \times\ \ \ \ \textup{multiplier}\end{array}}{\ \ \ \ \textup{product}}

For this problem, \displaystyle 11 is the multiplier and \displaystyle 13 is the multiplicand. We start with the multiplier, and multiply the digit in the ones place by each digit of the multiplicand. 

First, we multiply \displaystyle 1 and \displaystyle 3

\displaystyle \frac{\begin{array}[b]{r}1{\color{Red} 3}\\ \times\ {1\color{Red} 1}\end{array}}{\ \ \ \ \ 3}

Then, we multiply \displaystyle 1 and \displaystyle 1

 \displaystyle \frac{\begin{array}[b]{r}{\color{Red} 1}3\\ \times\ {1\color{Red} 1}\end{array}}{\ \ \ 13}

Now, we multiply the digit in the tens place of the multiplier by each digit of the multiplicand. In order to do this, we need to start a new line in our math problem and put a \displaystyle 0 as a place holder in the ones position. 

\displaystyle \frac{\begin{array}[b]{r}1 3\\ \times\ 11\end{array}}{\ \ \ 13 }\\ {\ \ \ \ \ \ \ \ \ \ \ 0}

Next, we multiply \displaystyle 1 and \displaystyle 3

\displaystyle \frac{\begin{array}[b]{r}1 {\color{Red} 3}\\ \times\ {\color{Red} 1}1\end{array}}{\ \ \ 13 }\\ {\ \ \ \ \ \ \ \ \ 30}

Then, we multiply \displaystyle 1 and \displaystyle 1

\displaystyle \frac{\begin{array}[b]{r}{\color{Red} 1} {\color{Black} 3}\\ \times\ {\color{Red} 1}1\end{array}}{\ \ \ 13 }\\ {\ \ \ \ \ \ \ \ 1 30}

Finally, we add the two products together to find our final answer 

\displaystyle \frac{\begin{array}[b]{r}13\\ \times \ \ \ 11\end{array}}{\frac{\begin{array}[b]{r}{\color{Red} 13}\\ \ +\ {\color{Red} 130} \end{array}}{\ }} \\ {\ \ \ \ \ \ \ \ \ \ \ 143}

 

Example Question #2 : Fluently Multiply Multi Digit Whole Numbers: Ccss.Math.Content.5.Nbt.B.5

Solve:

\displaystyle \frac{\begin{array}[b]{r}21\\ \times\ 17\end{array}}{\ \ \ \ }

Possible Answers:

\displaystyle 147

\displaystyle 210

\displaystyle 432

\displaystyle 357

\displaystyle 257

Correct answer:

\displaystyle 357

Explanation:

In order to solve this problem using multiplication, we must multiply each digit of the multiplier by each digit of the multiplicand to get the answer, which is called the product.

\displaystyle \frac{\begin{array}[b]{r}\textup{multiplicand}\\ \times\ \ \ \ \textup{multiplier}\end{array}}{\ \ \ \ \textup{product}}

For this problem, \displaystyle 17 is the multiplier and \displaystyle 21 is the multiplicand. We start with the multiplier, and multiply the digit in the ones place by each digit of the multiplicand. 

First, we multiply \displaystyle 7 and \displaystyle 1

\displaystyle \frac{\begin{array}[b]{r}2{\color{Red} 1}\\ \times\ {1\color{Red} 7}\end{array}}{\ \ \ \ \ 7}

Then, we multiply \displaystyle 7 and \displaystyle 2

 \displaystyle \frac{\begin{array}[b]{r}{\color{Red} 2}1\\ \times\ {1\color{Red} 7}\end{array}}{\ \ 147}

Now, we multiply the digit in the tens place of the multiplier by each digit of the multiplicand. In order to do this, we need to start a new line in our math problem and put a \displaystyle 0 as a place holder in the ones position. 

\displaystyle \frac{\begin{array}[b]{r}21\\ \times\ 17\end{array}}{\ \ 147 }\\ {\ \ \ \ \ \ \ \ \ \ \ 0}

Next, we multiply \displaystyle 1 and \displaystyle 1

\displaystyle \frac{\begin{array}[b]{r}2 {\color{Red} 1}\\ \times\ {\color{Red} 1}7\end{array}}{\ \ 147 }\\ {\ \ \ \ \ \ \ \ \ \ 10}

Then, we multiply \displaystyle 1 and \displaystyle 2

\displaystyle \frac{\begin{array}[b]{r}{\color{Red} 2} {\color{Black} 1}\\ \times\ {\color{Red} 1}7\end{array}}{\ \ 147 }\\ {\ \ \ \ \ \ \ \ 210}

Finally, we add the two products together to find our final answer 

\displaystyle \frac{\begin{array}[b]{r}21\\ \times \ \ \ 17\end{array}}{\frac{\begin{array}[b]{r}{\color{Red} 147}\\ \ +\ {\color{Red} 210} \end{array}}{\ }} \\ {\ \ \ \ \ \ \ \ \ \ \ 357}

Example Question #3 : Fluently Multiply Multi Digit Whole Numbers: Ccss.Math.Content.5.Nbt.B.5

Solve:

\displaystyle \frac{\begin{array}[b]{r}3 6\\ \times\ 12\end{array}}{\ \ \ \ }

Possible Answers:

\displaystyle 486

\displaystyle 660

\displaystyle 256

\displaystyle 512

\displaystyle 432

Correct answer:

\displaystyle 432

Explanation:

In order to solve this problem using multiplication, we must multiply each digit of the multiplier by each digit of the multiplicand to get the answer, which is called the product.

\displaystyle \frac{\begin{array}[b]{r}\textup{multiplicand}\\ \times\ \ \ \ \textup{multiplier}\end{array}}{\ \ \ \ \textup{product}}

For this problem, \displaystyle 12 is the multiplier and \displaystyle 36 is the multiplicand. We start with the multiplier, and multiply the digit in the ones place by each digit of the multiplicand. 

First, we multiply \displaystyle 2 and \displaystyle 6

\displaystyle \frac{\begin{array}[b]{r}^13{\color{Red} 6}\\ \times\ {1\color{Red} 2}\end{array}}{\ \ \ \ \ 2}

Then, we multiply \displaystyle 2 and \displaystyle 3 and add the \displaystyle 1 that was carried

 \displaystyle \frac{\begin{array}[b]{r}^{\color{Red} 1}{\color{Red} 3}6\\ \times\ {1\color{Red} 2}\end{array}}{\ \ \ \ 72}

Now, we multiply the digit in the tens place of the multiplier by each digit of the multiplicand. In order to do this, we need to start a new line in our math problem and put a \displaystyle 0 as a place holder in the ones position. 

\displaystyle \frac{\begin{array}[b]{r}3 6\\ \times\ 12\end{array}}{\ \ \ 72 }\\ {\ \ \ \ \ \ \ \ \ \ \ 0}

Next, we multiply \displaystyle 1 and \displaystyle 6

\displaystyle \frac{\begin{array}[b]{r}3 {\color{Red} 6}\\ \times\ {\color{Red} 1}2\end{array}}{\ \ \ 72 }\\ {\ \ \ \ \ \ \ \ \ 60}

Then, we multiply \displaystyle 1 and \displaystyle 3

\displaystyle \frac{\begin{array}[b]{r}{\color{Red} 3} {\color{Black} 6}\\ \times\ {\color{Red} 1}2\end{array}}{\ \ \ 72 }\\ {\ \ \ \ \ \ \ \ 360}

Finally, we add the two products together to find our final answer 

\displaystyle \frac{\begin{array}[b]{r}36\\ \times \ \ \ 12\end{array}}{\frac{\begin{array}[b]{r}{\color{Red} 72}\\ \ +\ {\color{Red} 360} \end{array}}{\ }} \\ {\ \ \ \ \ \ \ \ \ \ \ 432}

Example Question #4 : Fluently Multiply Multi Digit Whole Numbers: Ccss.Math.Content.5.Nbt.B.5

Solve:

\displaystyle \frac{\begin{array}[b]{r}3 3\\ \times\ 23\end{array}}{\ \ \ \ }

Possible Answers:

\displaystyle 554

\displaystyle 627

\displaystyle 834

\displaystyle 759

\displaystyle 960

Correct answer:

\displaystyle 759

Explanation:

In order to solve this problem using multiplication, we must multiply each digit of the multiplier by each digit of the multiplicand to get the answer, which is called the product.

\displaystyle \frac{\begin{array}[b]{r}\textup{multiplicand}\\ \times\ \ \ \ \textup{multiplier}\end{array}}{\ \ \ \ \textup{product}}

For this problem, \displaystyle 23 is the multiplier and \displaystyle 33 is the multiplicand. We start with the multiplier, and multiply the digit in the ones place by each digit of the multiplicand. 

First, we multiply \displaystyle 3 and \displaystyle 3

\displaystyle \frac{\begin{array}[b]{r}3{\color{Red} 3}\\ \times\ {2\color{Red} 3}\end{array}}{\ \ \ \ \ 9}

Then, we multiply \displaystyle 3 and \displaystyle 3

 \displaystyle \frac{\begin{array}[b]{r}{\color{Red} 3}3\\ \times\ {2\color{Red} 3}\end{array}}{\ \ \ 99}

Now, we multiply the digit in the tens place of the multiplier by each digit of the multiplicand. In order to do this, we need to start a new line in our math problem and put a \displaystyle 0 as a place holder in the ones position. 

\displaystyle \frac{\begin{array}[b]{r}3 3\\ \times\ 23\end{array}}{\ \ \ 99 }\\ {\ \ \ \ \ \ \ \ \ \ \ 0}

Next, we multiply \displaystyle 2 and \displaystyle 3

\displaystyle \frac{\begin{array}[b]{r}3 {\color{Red} 3}\\ \times\ {\color{Red} 2}3\end{array}}{\ \ \ 99 }\\ {\ \ \ \ \ \ \ \ \ 60}

Then, we multiply \displaystyle 2 and \displaystyle 3

\displaystyle \frac{\begin{array}[b]{r}{\color{Red} 3} {\color{Black} 3}\\ \times\ {\color{Red} 2}3\end{array}}{\ \ \ 99 }\\ {\ \ \ \ \ \ \ \ 660}

Finally, we add the two products together to find our final answer 

\displaystyle \frac{\begin{array}[b]{r}33\\ \times \ \ \ 23\end{array}}{\frac{\begin{array}[b]{r}{\color{Red} 99}\\ \ +\ {\color{Red} 660} \end{array}}{\ }} \\ {\ \ \ \ \ \ \ \ \ \ \ 759}

Example Question #2 : Fluently Multiply Multi Digit Whole Numbers: Ccss.Math.Content.5.Nbt.B.5

Solve:

\displaystyle \frac{\begin{array}[b]{r}14\\ \times\ 22\end{array}}{\ \ \ \ }

Possible Answers:

\displaystyle 432

\displaystyle 226

\displaystyle 396

\displaystyle 308

\displaystyle 476

Correct answer:

\displaystyle 308

Explanation:

In order to solve this problem using multiplication, we must multiply each digit of the multiplier by each digit of the multiplicand to get the answer, which is called the product.

\displaystyle \frac{\begin{array}[b]{r}\textup{multiplicand}\\ \times\ \ \ \ \textup{multiplier}\end{array}}{\ \ \ \ \textup{product}}

For this problem, \displaystyle 14 is the multiplier and \displaystyle 22 is the multiplicand. We start with the multiplier, and multiply the digit in the ones place by each digit of the multiplicand. 

First, we multiply \displaystyle 2 and \displaystyle 4

\displaystyle \frac{\begin{array}[b]{r}1{\color{Red} 4}\\ \times\ {2\color{Red} 2}\end{array}}{\ \ \ \ \ 8}

Then, we multiply \displaystyle 2 and \displaystyle 1

 \displaystyle \frac{\begin{array}[b]{r}{\color{Red} 1}4\\ \times\ {2\color{Red} 2}\end{array}}{\ \ \ 28}

Now, we multiply the digit in the tens place of the multiplier by each digit of the multiplicand. In order to do this, we need to start a new line in our math problem and put a \displaystyle 0 as a place holder in the ones position. 

\displaystyle \frac{\begin{array}[b]{r}1 4\\ \times\ 22\end{array}}{\ \ \ 28 }\\ {\ \ \ \ \ \ \ \ \ \ \ 0}

Next, we multiply \displaystyle 2 and \displaystyle 4

\displaystyle \frac{\begin{array}[b]{r}1 {\color{Red} 4}\\ \times\ {\color{Red} 2}2\end{array}}{\ \ \ 28 }\\ {\ \ \ \ \ \ \ \ \ 80}

Then, we multiply \displaystyle 2 and \displaystyle 1

\displaystyle \frac{\begin{array}[b]{r}{\color{Red} 1} {\color{Black} 4}\\ \times\ {\color{Red} 2}2\end{array}}{\ \ \ 28 }\\ {\ \ \ \ \ \ \ \ 280}

Finally, we add the two products together to find our final answer 

\displaystyle \frac{\begin{array}[b]{r}14\\ \times \ \ \ 22\end{array}}{\frac{\begin{array}[b]{r}{\color{Red} 28}\\ \ +\ {\color{Red} 280} \end{array}}{\ }} \\ {\ \ \ \ \ \ \ \ \ \ \ 308}

Example Question #23 : How To Multiply

Solve:

\displaystyle \frac{\begin{array}[b]{r}43\\ \times\ 35\end{array}}{\ \ \ \ }

Possible Answers:

\displaystyle 932

\displaystyle 1\textup,505

\displaystyle 804

\displaystyle 876

\displaystyle 985

Correct answer:

\displaystyle 1\textup,505

Explanation:

In order to solve this problem using multiplication, we must multiply each digit of the multiplier by each digit of the multiplicand to get the answer, which is called the product.

\displaystyle \frac{\begin{array}[b]{r}\textup{multiplicand}\\ \times\ \ \ \ \textup{multiplier}\end{array}}{\ \ \ \ \textup{product}}

For this problem, \displaystyle 35 is the multiplier and \displaystyle 43 is the multiplicand. We start with the multiplier, and multiply the digit in the ones place by each digit of the multiplicand. 

First, we multiply \displaystyle 5 and \displaystyle 3

\displaystyle \frac{\begin{array}[b]{r}^14{\color{Red} 3}\\ \times\ {3\color{Red} 5}\end{array}}{\ \ \ \ \ 5}

Then, we multiply \displaystyle 5 and \displaystyle 4 and add the \displaystyle 1 that was carried

 \displaystyle \frac{\begin{array}[b]{r}^{\color{Red} 1}{\color{Red} 4}3\\ \times\ {3\color{Red} 5}\end{array}}{\ \ \ 215}

Now, we multiply the digit in the tens place of the multiplier by each digit of the multiplicand. In order to do this, we need to start a new line in our math problem and put a \displaystyle 0 as a place holder in the ones position. 

\displaystyle \frac{\begin{array}[b]{r}43\\ \times\ 35\end{array}}{\ \ \ 215 }\\ {\ \ \ \ \ \ \ \ \ \ \ \ 0}

Next, we multiply \displaystyle 3 and \displaystyle 3

\displaystyle \frac{\begin{array}[b]{r}4 {\color{Red} 3}\\ \times\ {\color{Red} 3}5\end{array}}{\ \ \ 215 }\\ {\ \ \ \ \ \ \ \ \ \ 90}

Then, we multiply \displaystyle 3 and \displaystyle 4

\displaystyle \frac{\begin{array}[b]{r}{\color{Red} 4} {\color{Black} 3}\\ \times\ {\color{Red} 3}5\end{array}}{\ \ \ 215 }\\ {\ \ \ \ \ \ \ 1290}

Finally, we add the two products together to find our final answer 

\displaystyle \frac{\begin{array}[b]{r}43\\ \times \ \ \ 35\end{array}}{\frac{\begin{array}[b]{r}{\color{Red} 215}\\ \ +\ {\color{Red} 1290} \end{array}}{\ }} \\ {\ \ \ \ \ \ \ \ \ \ \ 1505}

Example Question #2 : Fluently Multiply Multi Digit Whole Numbers: Ccss.Math.Content.5.Nbt.B.5

Solve:

\displaystyle \frac{\begin{array}[b]{r}40\\ \times\ 10\end{array}}{\ \ \ \ }

Possible Answers:

\displaystyle 420

\displaystyle 440

\displaystyle 410

\displaystyle 444

\displaystyle 400

Correct answer:

\displaystyle 400

Explanation:

In order to solve this problem using multiplication, we must multiply each digit of the multiplier by each digit of the multiplicand to get the answer, which is called the product.

\displaystyle \frac{\begin{array}[b]{r}\textup{multiplicand}\\ \times\ \ \ \ \textup{multiplier}\end{array}}{\ \ \ \ \textup{product}}

For this problem, \displaystyle 10 is the multiplier and \displaystyle 40 is the multiplicand. We start with the multiplier, and multiply the digit in the ones place by each digit of the multiplicand. 

First, we multiply \displaystyle 0 and \displaystyle 0

\displaystyle \frac{\begin{array}[b]{r}4{\color{Red} 0}\\ \times\ {1\color{Red} 0}\end{array}}{\ \ \ \ \ 0}

Then, we multiply \displaystyle 0 and \displaystyle 4

 \displaystyle \frac{\begin{array}[b]{r}{\color{Red}4}0\\ \times\ {1\color{Red} 0}\end{array}}{\ \ \ 00}

Now, we multiply the digit in the tens place of the multiplier by each digit of the multiplicand. In order to do this, we need to start a new line in our math problem and put a \displaystyle 0 as a place holder in the ones position. 

\displaystyle \frac{\begin{array}[b]{r}40\\ \times\ 10\end{array}}{\ \ \ 00 }\\ {\ \ \ \ \ \ \ \ \ \ \ 0}

Next, we multiply \displaystyle 1 and \displaystyle 0

\displaystyle \frac{\begin{array}[b]{r}4 {\color{Red} 0}\\ \times\ {\color{Red} 1}0\end{array}}{\ \ \ \ 00 }\\ {\ \ \ \ \ \ \ \ \ \ 00}

Then, we multiply \displaystyle 1 and \displaystyle 4

\displaystyle \frac{\begin{array}[b]{r}{\color{Red} 4} {\color{Black} 0}\\ \times\ {\color{Red} 1}0\end{array}}{\ \ \ \ 00 }\\ {\ \ \ \ \ \ \ \ 400}

Finally, we add the two products together to find our final answer 

\displaystyle \frac{\begin{array}[b]{r}40\\ \times \ \ \ 10\end{array}}{\frac{\begin{array}[b]{r}{\color{Red} 00}\\ \ +\ {\color{Red} 400} \end{array}}{\ }} \\ {\ \ \ \ \ \ \ \ \ \ \ 400}

Example Question #1 : Fluently Multiply Multi Digit Whole Numbers: Ccss.Math.Content.5.Nbt.B.5

Solve:

\displaystyle \frac{\begin{array}[b]{r}52\\ \times\ 43\end{array}}{\ \ \ \ }

Possible Answers:

\displaystyle 2\textup,136

\displaystyle 2\textup,236

\displaystyle 1\textup,824

\displaystyle 2\textup,080

\displaystyle 1\textup,328

Correct answer:

\displaystyle 2\textup,236

Explanation:

In order to solve this problem using multiplication, we must multiply each digit of the multiplier by each digit of the multiplicand to get the answer, which is called the product.

\displaystyle \frac{\begin{array}[b]{r}\textup{multiplicand}\\ \times\ \ \ \ \textup{multiplier}\end{array}}{\ \ \ \ \textup{product}}

For this problem, \displaystyle 43 is the multiplier and \displaystyle 52 is the multiplicand. We start with the multiplier, and multiply the digit in the ones place by each digit of the multiplicand. 

First, we multiply \displaystyle 3 and \displaystyle 2

\displaystyle \frac{\begin{array}[b]{r}5{\color{Red} 2}\\ \times\ {4\color{Red} 3}\end{array}}{\ \ \ \ \ 6}

Then, we multiply \displaystyle 3 and \displaystyle 5

 \displaystyle \frac{\begin{array}[b]{r}{\color{Red} 5}2\\ \times\ {4\color{Red} 3}\end{array}}{\ \ 156}

Now, we multiply the digit in the tens place of the multiplier by each digit of the multiplicand. In order to do this, we need to start a new line in our math problem and put a \displaystyle 0 as a place holder in the ones position. 

\displaystyle \frac{\begin{array}[b]{r}52\\ \times\ 43\end{array}}{\ \ 156 }\\ {\ \ \ \ \ \ \ \ \ \ \ 0}

Next, we multiply \displaystyle 4 and \displaystyle 2

\displaystyle \frac{\begin{array}[b]{r}5 {\color{Red} 2}\\ \times\ {\color{Red} 4}3\end{array}}{\ \ 156 }\\ {\ \ \ \ \ \ \ \ \ \ 80}

Then, we multiply \displaystyle 4 and \displaystyle 5

\displaystyle \frac{\begin{array}[b]{r}{\color{Red} 5} {\color{Black} 2}\\ \times\ {\color{Red} 4}3\end{array}}{\ \ 156 }\\ {\ \ \ \ \ \ \ 2080}

Finally, we add the two products together to find our final answer 

\displaystyle \frac{\begin{array}[b]{r}52\\ \times \ \ \ 43\end{array}}{\frac{\begin{array}[b]{r}{\color{Red} 156}\\ \ +\ {\color{Red} 2080} \end{array}}{\ }} \\ {\ \ \ \ \ \ \ \ \ \ \ 2236}

Example Question #331 : Numbers And Operations

Solve:

\displaystyle \frac{\begin{array}[b]{r}56\\ \times\ 17\end{array}}{\ \ \ \ }

Possible Answers:

\displaystyle 952

\displaystyle 808

\displaystyle 874

\displaystyle 752

\displaystyle 781

Correct answer:

\displaystyle 952

Explanation:

In order to solve this problem using multiplication, we must multiply each digit of the multiplier by each digit of the multiplicand to get the answer, which is called the product.

\displaystyle \frac{\begin{array}[b]{r}\textup{multiplicand}\\ \times\ \ \ \ \textup{multiplier}\end{array}}{\ \ \ \ \textup{product}}

For this problem, \displaystyle 17 is the multiplier and \displaystyle 56 is the multiplicand. We start with the multiplier, and multiply the digit in the ones place by each digit of the multiplicand. 

First, we multiply \displaystyle 7 and \displaystyle 6

\displaystyle \frac{\begin{array}[b]{r}^45{\color{Red} 6}\\ \times\ {1\color{Red} 7}\end{array}}{\ \ \ \ \ 2}

Then, we multiply \displaystyle 7 and \displaystyle 5 and add the \displaystyle 4 that was carried

 \displaystyle \frac{\begin{array}[b]{r}^{\color{Red} 4}{\color{Red} 5}6\\ \times\ {1\color{Red} 7}\end{array}}{\ \ 392}

Now, we multiply the digit in the tens place of the multiplier by each digit of the multiplicand. In order to do this, we need to start a new line in our math problem and put a \displaystyle 0 as a place holder in the ones position. 

\displaystyle \frac{\begin{array}[b]{r}5 6\\ \times\ 17\end{array}}{\ \ 392 }\\ {\ \ \ \ \ \ \ \ \ \ \ 0}

Next, we multiply \displaystyle 1 and \displaystyle 6

\displaystyle \frac{\begin{array}[b]{r}5 {\color{Red} 6}\\ \times\ {\color{Red} 1}7\end{array}}{\ \ 392 }\\ {\ \ \ \ \ \ \ \ \ \ 60}

Then, we multiply \displaystyle 1 and \displaystyle 5

\displaystyle \frac{\begin{array}[b]{r}{\color{Red} 5} {\color{Black} 6}\\ \times\ {\color{Red} 1}7\end{array}}{\ \ 392 }\\ {\ \ \ \ \ \ \ \ 560}

Finally, we add the two products together to find our final answer 

\displaystyle \frac{\begin{array}[b]{r}56\\ \times \ \ \ 17\end{array}}{\frac{\begin{array}[b]{r}{\color{Red} 392}\\ \ +\ {\color{Red} 560} \end{array}}{\ }} \\ {\ \ \ \ \ \ \ \ \ \ \ 952}

Learning Tools by Varsity Tutors