GED Math : Graphing Lines

Study concepts, example questions & explanations for GED Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Graphing Lines

A line has slope \(\displaystyle \frac{3}{4}\) and \(\displaystyle y\)-intercept \(\displaystyle (0, -7)\). Give its \(\displaystyle x\)-intercept.

Possible Answers:

\(\displaystyle \left (- 9 \frac{1}{3}, 0 \right )\)

\(\displaystyle \left (-5\frac{1}{4}, 0 \right )\)

\(\displaystyle \left (5\frac{1}{4}, 0 \right )\)

\(\displaystyle \left ( 9 \frac{1}{3}, 0 \right )\)

Correct answer:

\(\displaystyle \left ( 9 \frac{1}{3}, 0 \right )\)

Explanation:

The \(\displaystyle x\)-intercept will be a point \(\displaystyle (a,0)\) for some value \(\displaystyle a\). We use the slope formula

\(\displaystyle \frac{y_{2}- y _{1}}{x_{2}- x _{1}} = m\),

setting \(\displaystyle m = \frac{3}{4}, x_{1} =0, x_{2} = a, y_{1} = -7, y_{2} =0\),

and solving for \(\displaystyle a\):

\(\displaystyle \frac{0- (-7)}{a-0} = \frac{3}{4}\)

\(\displaystyle \frac{ 7}{a} = \frac{3}{4}\)

\(\displaystyle \frac{ 7}{a} \cdot a = \frac{3}{4} \cdot a\)

\(\displaystyle 7= \frac{3}{4} \cdot a\)

\(\displaystyle \frac{4} {3}\cdot 7= \frac{4} {3}\cdot \frac{3}{4} \cdot a\)

\(\displaystyle a = \frac{28} {3} = 9 \frac{1}{3}\)

The \(\displaystyle x\)-intercept is \(\displaystyle \left ( 9 \frac{1}{3}, 0 \right )\).

Example Question #1 : Graphing Lines

A line has slope \(\displaystyle \frac{3}{4}\) and \(\displaystyle x\)-intercept \(\displaystyle (5, 0)\). Give its \(\displaystyle y\)-intercept.

Possible Answers:

\(\displaystyle \left (0, 3 \frac{3}{4} \right )\)

\(\displaystyle \left (0, -3 \frac{3}{4} \right )\)

\(\displaystyle \left (0, 6 \frac{2} {3}\right )\)

\(\displaystyle \left (0, -6 \frac{2} {3}\right )\)

Correct answer:

\(\displaystyle \left (0, -3 \frac{3}{4} \right )\)

Explanation:

The \(\displaystyle y\)-intercept will be the point \(\displaystyle (0, b)\) for some value \(\displaystyle b\). We use the slope formula

\(\displaystyle \frac{y_{2}- y _{1}}{x_{2}- x _{1}} = m\),

setting \(\displaystyle m = \frac{3}{4}, x_{1} = 5, x_{2} = 0, y_{1} = 0, y_{2} = b\),

and solving for \(\displaystyle b\):

\(\displaystyle \frac{b-0}{0- 5} = \frac{3}{4}\)

\(\displaystyle \frac{b }{ - 5} = \frac{3}{4}\)

\(\displaystyle \frac{b }{ - 5} \cdot (-5) = \frac{3}{4} \cdot (-5)\)

\(\displaystyle b= \frac{-15}{4} = -3 \frac{3}{4}\)

The \(\displaystyle y\)-intercept is \(\displaystyle \left (0, -3 \frac{3}{4} \right )\).

Learning Tools by Varsity Tutors