High School Math : Quadratic Equations and Inequalities

Study concepts, example questions & explanations for High School Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Understanding Quadratic Equations

Solve the following equation using the quadratic form:

\displaystyle x^4-9=0

Possible Answers:

\displaystyle x=\pm\sqrt{6}, \pm i\sqrt{6}

\displaystyle x=\pm\sqrt{2}, \pm i\sqrt{2}

\displaystyle x=\pm\sqrt{3}, \pm i\sqrt{3}

\displaystyle x=\pm\sqrt{4}, \pm i\sqrt{4}

\displaystyle x=\pm\sqrt{5}, \pm i\sqrt{5}

Correct answer:

\displaystyle x=\pm\sqrt{3}, \pm i\sqrt{3}

Explanation:

Factor the equation and solve:

\displaystyle x^4-9=0

\displaystyle (x^2-3)(x^2+3)=0

\displaystyle x^2 = 3

\displaystyle x = \pm \sqrt{3}

 or

\displaystyle x^2 = -3

\displaystyle x = \pm i\sqrt{3}

Therefore there are four answers:

\displaystyle x=\pm\sqrt{3}, \pm i\sqrt{3}

Example Question #2 : Understanding Quadratic Equations

Solve the following equation using the quadratic form:

\displaystyle x-4\sqrt{x}-45=0

Possible Answers:

\displaystyle x=25

\displaystyle x=81

\displaystyle x=36

\displaystyle x=49

\displaystyle x=64

Correct answer:

\displaystyle x=81

Explanation:

Factor the equation and solve:

\displaystyle x-4\sqrt{x}-45=0

\displaystyle (\sqrt{x}-9)(\sqrt{x}+5)=0

\displaystyle \sqrt{x}=9

\displaystyle x=81

or

\displaystyle \sqrt{x}=-5

This has no solutions.

Therefore there is only one answer:

\displaystyle x=81

Example Question #1 : Quadratic Equations And Inequalities

Evaluate \displaystyle (2x+2y)^{2}

Possible Answers:

\displaystyle 4x^{2}+8xy+4y^{2}

\displaystyle \dpi{100} 2x^{2}+4xy+2y^{2}

\displaystyle \dpi{100} x^{2}+xy+y^{2}

\displaystyle \dpi{100} 4x^{2}+4xy+4y^{2}

\displaystyle \dpi{100} 4x^{2}+4y^{2}

Correct answer:

\displaystyle 4x^{2}+8xy+4y^{2}

Explanation:

In order to evaluate \displaystyle \dpi{100} (2x+2y)^{2} one needs to multiply the expression by itself using the laws of FOIL.  In the foil method, one multiplies in the following order: first terms, outer terms, inner terms, and last terms.

\displaystyle \dpi{100} \dpi{100} (2x+2y)^{2}=(2x+2y)(2x+2y)

Multiply terms by way of FOIL method.

\displaystyle =(2x*2x)+(2x*2y)+(2y*2x)+(2y*2y)

Now multiply and simplify.

\displaystyle =4x^{2}+4xy+4xy+4y^{2}

\displaystyle \rightarrow 4x^{2}+8xy+4y^{2}

Example Question #2 : Quadratic Equations And Inequalities

Evaluate \displaystyle (x-2)^{2}

Possible Answers:

\displaystyle \dpi{100} x^{2}-2x+4

\displaystyle \dpi{100} x^{2}+4

\displaystyle \dpi{100} 4x^{2}-4x+4

\displaystyle \dpi{100} x^{2}-4

\displaystyle x^{2}-4x+4

Correct answer:

\displaystyle x^{2}-4x+4

Explanation:

In order to evaluate \displaystyle \dpi{100} \dpi{100} (x-2)^{2} one needs to multiply the expression by itself using the laws of FOIL.  In the foil method, one multiplies in the following order: first terms, outer terms, inner terms, and last terms.  Be sure to pay attention to signs.

\displaystyle (x-2)^{2}=(x-2)(x-2)

Multiply terms by way of FOIL method.

\displaystyle =(x*x)+(x*-2)+(-2*x)+(-2*-2)

Now multiply and simplify, paying attention to signs.

\displaystyle =x^{2}+(-2x)+(-2x)+4

\displaystyle \rightarrow x^{2}-4x+4

Example Question #33 : Intermediate Single Variable Algebra

Evaluate \displaystyle (x+2y)*(2x-y)

Possible Answers:

\displaystyle 2x^{2}+3xy-2y^{2}

\displaystyle \dpi{100} -2x^{2}-3xy+2y^{2}

\displaystyle \dpi{100} x^{2}+2xy-y^{2}

\displaystyle \dpi{100} 2x^{2}+4xy-2y^{2}

\displaystyle \dpi{100} 4x^{2}+xy-4y^{2}

Correct answer:

\displaystyle 2x^{2}+3xy-2y^{2}

Explanation:

In order to evaluate \displaystyle (x+2y)*(2x-y) one needs to multiply the expression by itself using the laws of FOIL.  In the foil method, one multiplies in the following order: first terms, outer terms, inner terms, and last terms.  Be sure to pay attention to signs.

Multiply terms by way of FOIL method.

\displaystyle =(x*2x)+(x*-y)+(2y*2x)+(2y*-y)

Now multiply and simplify, paying attention to signs.

\displaystyle =2x^{2}+(-xy)+4xy+(-2y^{2})

\displaystyle \rightarrow 2x^{2}+3xy-2y^{2}

Example Question #34 : Intermediate Single Variable Algebra

Evaluate \displaystyle (x-y)^{2}

Possible Answers:

\displaystyle \dpi{100} -x^{2}+2xy-y^{2}

\displaystyle \dpi{100} 2x^{2}-4xy+2y^{2}

\displaystyle \dpi{100} x^{2}-y^{2}

\displaystyle x^{2}-2xy+y^{2}

\displaystyle x^{2}+y^{2}

Correct answer:

\displaystyle x^{2}-2xy+y^{2}

Explanation:

In order to evaluate \displaystyle \dpi{100} \dpi{100} (x-y)^{2} one needs to multiply the expression by itself using the laws of FOIL.  In the foil method, one multiplies in the following order: first terms, outer terms, inner terms, and last terms.  Be sure to pay attention to signs.

\displaystyle (x-y)^{2}=(x-y)(x-y)

Multiply terms by way of FOIL method.

\displaystyle =(x*x)+(x*-y)+(-y*x)+(-y*-y)

Now multiply and simplify, paying attention to signs.

\displaystyle =x^{2}+(-xy)+(-xy)+(y^{2})

\displaystyle \rightarrow x^{2}-2xy+y^{2}

Example Question #1 : Using Foil

FOIL \displaystyle (x+2)(x-2).

Possible Answers:

\displaystyle x^2-4

\displaystyle x^2+4x+4

\displaystyle x^2-2x+2

\displaystyle x^2+x-2

\displaystyle x^2+4

Correct answer:

\displaystyle x^2-4

Explanation:

Remember FOIL stands for First Outer Inner Last. That means we can take \displaystyle (x+2)(x-2) and turn it into \displaystyle x^2+2x-2x-4.

Simplify to get \displaystyle x^2-4.

Example Question #42 : Intermediate Single Variable Algebra

FOIL \displaystyle (x+5)^2.

Possible Answers:

\displaystyle x^2-10x+25

\displaystyle x^2+10x+25

\displaystyle x^2+25x+25

\displaystyle 5x^2

\displaystyle x^2+25

Correct answer:

\displaystyle x^2+10x+25

Explanation:

\displaystyle (x+5)^2 is the same thing as \displaystyle (x+5)(x+5).

Remember that FOIL stands for First Outer Inner Last.

For this problem, that would be \displaystyle x^2+5x+5x+25

Simplify that to \displaystyle x^2+10x+25.

Example Question #3 : Understanding Quadratic Equations

FOIL \displaystyle (x+5)(x-1).

Possible Answers:

\displaystyle x^2+4x-5

\displaystyle x^2+24

\displaystyle x^2-4x-5

\displaystyle x^2-5

\displaystyle x^2+5x+5

Correct answer:

\displaystyle x^2+4x-5

Explanation:

Remember that FOIL stands for First Outer Inner Last.

For this problem that would give us:

\displaystyle (x+5)(x-1)

\displaystyle x^2-x+5x-5

Simplify.

\displaystyle x^2+4x-5

Example Question #44 : Intermediate Single Variable Algebra

FOIL \displaystyle (x+2)(x-2).

Possible Answers:

\displaystyle x^2-4

\displaystyle x^2+4

\displaystyle x^2-4x-4

\displaystyle x^2-4x

\displaystyle -x^2+4

Correct answer:

\displaystyle x^2-4

Explanation:

Remember that FOIL stands for First Outer Inner Last.

For this problem that would give us:

\displaystyle (x+2)(x-2)

\displaystyle =x^2-2x+2x-4

Simplify:

\displaystyle =x^2-4

 

 

Learning Tools by Varsity Tutors