High School Math : Solving and Graphing Radical Equations

Study concepts, example questions & explanations for High School Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Solving Radical Equations And Inequalities

Solve for \displaystyle x:

\displaystyle \sqrt{x^2+12x+36} =4

Possible Answers:

\displaystyle x = \{-2, 0\}

\displaystyle x = -2

\displaystyle x = -10

\displaystyle x = \left \{ -10, -2\right \}

\displaystyle x = \{-10, -6, -2\}

Correct answer:

\displaystyle x = \left \{ -10, -2\right \}

Explanation:

To solve for \displaystyle x in the equation \displaystyle \sqrt{x^2+12x+36} =4

Square both sides of the equation 

\displaystyle \rightarrow (\sqrt{x^2+12x+36})^2 =(4)^2

\displaystyle \rightarrow x^2+12x+36 =16

Set the equation equal to \displaystyle 0 by subtracting the constant \displaystyle 16 from both sides of the equation.

\displaystyle \rightarrow (x^2+12x+36) - 16 =(16) -16

\displaystyle \rightarrow x^2+12x+20 =0

Factor to find the zeros:

\displaystyle \rightarrow (x+10)(x+2) = 0

This gives the solutions 

\displaystyle x = \left \{ -10, -2\right \}.

Verify that these work in the original equation by substituting them in for \displaystyle x. This is especially important to do in equations involving radicals to ensure no imaginary numbers (square roots of negative numbers) are created.

Example Question #2 : Solving Radical Equations And Inequalities

Solve the following radical expression:

\displaystyle \sqrt{3x+1}+2=7

Possible Answers:

\displaystyle 8

\displaystyle 6

\displaystyle 5

\displaystyle 7

\displaystyle 9

Correct answer:

\displaystyle 8

Explanation:

Begin by subtracting \displaystyle 2 from each side of the equation:

\displaystyle \sqrt{3x+1}+2=7

\displaystyle \sqrt{3x+1}=5

 

Now, square the equation:

\displaystyle (\sqrt{3x+1}=5)^2

\displaystyle 3x+1=25

 

Solve the linear equation:

\displaystyle 3x=24

\displaystyle x=8

Example Question #3 : Solving And Graphing Radical Equations

Solve the following radical expression:

\displaystyle \sqrt{2x+1}-2=\sqrt{2x-7}

Possible Answers:

\displaystyle 7

\displaystyle 4

\displaystyle 6

\displaystyle 3

\displaystyle 5

Correct answer:

\displaystyle 4

Explanation:

Begin by squaring both sides of the equation:

\displaystyle \sqrt{2x+1}-2=\sqrt{2x-7}

\displaystyle (\sqrt{2x+1}-2)^2=(\sqrt{2x-7})^2

\displaystyle (2x+1)-4\sqrt{2x+1}+4=2x-7

 

Combine like terms:

\displaystyle -4\sqrt{2x+1}=-12

\displaystyle \sqrt{2x+1}=3

 

Once again, square both sides of the equation:

\displaystyle (\sqrt{2x+1}=3)^2

\displaystyle 2x+1=9

 

Solve the linear equation:

\displaystyle 2x=8

\displaystyle x=4

Example Question #82 : Algebra Ii

Solve the following radical expression:

\displaystyle \sqrt{4x+29}=(x+6)

Possible Answers:

\displaystyle 7

No real solutions

\displaystyle 1

\displaystyle -7

\displaystyle -1

Correct answer:

\displaystyle -1

Explanation:

Begin by squaring both sides of the equation:

\displaystyle \sqrt{4x+29}=(x+6)

\displaystyle (\sqrt{4x+29})^2=(x+6)^2

\displaystyle 4x+29=x^2+12x+36

 

Now, combine like terms:

\displaystyle x^2+8x+7=0

 

Factor the equation:

\displaystyle (x+7)(x+1)=0

\displaystyle x=-1,-7

 

However, when plugging in the values, \displaystyle -7 does not work. Therefore, there is only one solution:

\displaystyle x=-1

Example Question #5 : Solving And Graphing Radical Equations

Solve the following radical expression:

\displaystyle \sqrt{y+12}+1=\sqrt{y+21}

Possible Answers:

\displaystyle 3

\displaystyle 6

\displaystyle 2

\displaystyle 5

\displaystyle 4

Correct answer:

\displaystyle 4

Explanation:

Begin by squaring both sides of the equation:

\displaystyle \sqrt{y+12}+1=\sqrt{y+21}

\displaystyle (\sqrt{y+12}+1)^2=(\sqrt{y+21})^2

\displaystyle (y+12)+2\sqrt{y+12}+1=y+21

 

Now, combine like terms and simplify:

\displaystyle 2\sqrt{y+12}=8

\displaystyle \sqrt{y+12}=4

 

Once again, take the square of both sides of the equation:

\displaystyle (\sqrt{y+12}=4)^2

\displaystyle y+12=16

 

Solve the linear equation:

\displaystyle y=4

Example Question #6 : Solving And Graphing Radical Equations

Solve the following radical expression:

\displaystyle \sqrt{5+2x}=x-5

Possible Answers:

\displaystyle 8

\displaystyle 4

\displaystyle 10

\displaystyle 2

\displaystyle 6

Correct answer:

\displaystyle 10

Explanation:

Begin by taking the square of both sides:

\displaystyle \sqrt{5+2x}=x-5

\displaystyle (\sqrt{5+2x})^2=(x-5)^2

\displaystyle 5+2x=x^2-10x+25

 

Combine like terms:

\displaystyle x^2-12x+20=0

 

Factor the equation and solve:

\displaystyle (x-10)(x-2)=0

\displaystyle x=10,2

 

However, when plugging in the values, \displaystyle 2 does not work. Therefore, there is only one solution:

\displaystyle x=10

Example Question #7 : Solving And Graphing Radical Equations

Solve the following radical expression:

\displaystyle \sqrt{x+11}-x=-9

Possible Answers:

\displaystyle 12

\displaystyle 7

\displaystyle 5

\displaystyle 15

\displaystyle 14

Correct answer:

\displaystyle 14

Explanation:

To solve the radical expression, begin by subtracting \displaystyle x from each side of the equation:

\displaystyle \sqrt{x+11}-x=-9

\displaystyle \sqrt{x+11}=x-9

Now, square both sides of the equation:

\displaystyle (\sqrt{x+11})^2=(x-9)^2

\displaystyle x+11=x^2-18x+81

Combine like terms:

\displaystyle x^2-19x+70=0

Factor the expression and solve:

\displaystyle (x-14)(x-5)=0

\displaystyle x=14,5

However, when plugged into the original equation, \displaystyle 5 does not work because the radical cannot be negative. Therefore, there is only one solution:

\displaystyle x=14

Example Question #1 : Solving And Graphing Radical Equations

Solve the equation for \displaystyle x.

\displaystyle \sqrt{4x+9}-8=5

 

 

 

 

 

 

 

Possible Answers:

\displaystyle x=-44.5

\displaystyle x=16

\displaystyle x=44.5

\displaystyle x=-40

\displaystyle x=40

Correct answer:

\displaystyle x=40

Explanation:

\displaystyle \small \sqrt{4x+9}-8=5

Add \displaystyle 8 to both sides.

\displaystyle \small \sqrt{4x+9}=13

Square both sides.

\displaystyle \small (\sqrt{4x+9})^2=13^2

\displaystyle \small 4x+9=169

Isolate \displaystyle x.

\displaystyle \small 4x=160

\displaystyle \small x=40

Example Question #1281 : High School Math

Solve for \displaystyle y:

\displaystyle \sqrt[3]{y+1}=3

Possible Answers:

\displaystyle 17

\displaystyle 11

\displaystyle 8

\displaystyle 2

\displaystyle 26

Correct answer:

\displaystyle 26

Explanation:

Begin by cubing both sides:

\displaystyle \sqrt[3]{y+1}=3

\displaystyle (\sqrt[3]{y+1}=3)^3

\displaystyle y+1=27

Now we can easily solve:

\displaystyle y=26

Learning Tools by Varsity Tutors