High School Math : Simplifying Polynomials

Study concepts, example questions & explanations for High School Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Polynomials

Simplify the following expression: 

\(\displaystyle 3x^9y^4 \cdot (2y)^3\).

Possible Answers:

\(\displaystyle 24x^9y^7\)

\(\displaystyle 11x^9y^7\)

\(\displaystyle 24x^9y^{12}\)

\(\displaystyle 18x^9y^6\)

Correct answer:

\(\displaystyle 24x^9y^7\)

Explanation:

First, multiply out the second expression so that you get \(\displaystyle 8y^3\).

Then, multiply your like terms, taking care to remember that when multiplying terms that have the same base, you add the exponents. Thus, you get \(\displaystyle 24x^9y^{12}\).

Example Question #1 : Polynomials

Simplify:

\(\displaystyle \frac{13x^2y^5z^9}{169xy^5z^4}\)

Possible Answers:

\(\displaystyle \frac{xz^5}{13}\)

\(\displaystyle \frac{xz^5}{169}\)

\(\displaystyle xz^5\)

\(\displaystyle xy^5\)

\(\displaystyle \frac{x}{13}\)

Correct answer:

\(\displaystyle \frac{xz^5}{13}\)

Explanation:

Focus on each pair of like terms. The \(\displaystyle y's\) completely cancel out, there is one \(\displaystyle x\) left on top, and five \(\displaystyle z's\) left on the bottom. 

\(\displaystyle \frac{13}{169}\) reduces to \(\displaystyle \frac{1}{13}\).

Put that all together to get \(\displaystyle \frac{xz^5}{13}\)

Example Question #1 : Simplifying Exponents

Simplify.

\(\displaystyle x^{-6}x^3x^9\)

Possible Answers:

\(\displaystyle x^{-12}\)

\(\displaystyle x\)

\(\displaystyle x^{12}\)

\(\displaystyle x^6\)

\(\displaystyle x^{-6}\)

Correct answer:

\(\displaystyle x^6\)

Explanation:

Put the negative exponent on the bottom so that you have \(\displaystyle \frac{x^{12}}{x^{6}}\) which simplifies further to \(\displaystyle x^{6}\).

Example Question #1 : Foil

Expand this expression:

\(\displaystyle (x-4)\)\(\displaystyle (2x+4)\)

Possible Answers:

\(\displaystyle 2x^2 + 4x - 16\)

\(\displaystyle 2x^2 + 4x + 16\)

\(\displaystyle 2x - 4x - 16\)

\(\displaystyle 2x^2 - 4x - 16\)

\(\displaystyle 2x^2 - 4x + 16\)

Correct answer:

\(\displaystyle 2x^2 - 4x - 16\)

Explanation:

Use the FOIL method (First, Outer, Inner, Last):

\(\displaystyle x * 2x = 2x^2\)

\(\displaystyle x * 4 = 4x\)

\(\displaystyle -4 * 2x = -8x\)

\(\displaystyle -4 * 4 = -16\)

Put all of these terms together:

\(\displaystyle 2x^2 + 4x - 8x - 16\)

Combine like terms:

\(\displaystyle 2x^2 - 4x - 16\)

Example Question #1 : Simplifying Polynomials

Simplify the following polynomial:

\(\displaystyle ab^{-2}(a^2b+a^{-1}b^3-a^3b^{-1})\)

Possible Answers:

\(\displaystyle \frac{a^3}{b}+a-\frac{a^4}{b^3}\)

\(\displaystyle \frac{a^2}{b}+b-\frac{a^4}{b^3}\)

\(\displaystyle \frac{a^3}{b}+b-\frac{a^3}{b^4}\)

\(\displaystyle \frac{a^3}{b}+b-\frac{a^4}{b^3}\)

\(\displaystyle \frac{a^3}{b}+b^2-\frac{a^4}{b^3}\)

Correct answer:

\(\displaystyle \frac{a^3}{b}+b-\frac{a^4}{b^3}\)

Explanation:

To simplify the polynomial, begin by multiplying the first binomial by every term within the parentheses:

\(\displaystyle ab^{-2}(a^2b+a^{-1}b^3-a^3b^{-1})\)

\(\displaystyle aa^2b^{-2}b+aa^{-1}b^{-2}b^3-aa^3b^{-2}b^{-1}\)

Now, combine like terms:

\(\displaystyle a^3b^{-1}+b^1-a^4b^{-3}\)

 

Convert the polynomial into fraction form:

\(\displaystyle \frac{a^3}{b}+b-\frac{a^4}{b^3}\)

Example Question #1 : Simplifying Polynomials

Simplify the following polynomial:

\(\displaystyle \frac{-18a^{-2}b^3c^{-4}}{12ab^{-2}c^{-3}}\)

Possible Answers:

\(\displaystyle \frac{-3b^5}{2a^3c^2}\)

\(\displaystyle \frac{-3b^4}{2a^3c}\)

\(\displaystyle \frac{-3b^5}{2a^3c}\)

\(\displaystyle \frac{-3b^5}{2ac}\)

\(\displaystyle \frac{-5b^5}{2a^3c}\)

Correct answer:

\(\displaystyle \frac{-3b^5}{2a^3c}\)

Explanation:

To simplify the polynomial, begin by rearranging the terms to have positive exponents:

\(\displaystyle \frac{-18a^{-2}b^3c^{-4}}{12ab^{-2}c^{-3}}\)

\(\displaystyle \frac{-18b^3b^2c^{3}}{12aa^2c^{4}}\)

Now, combine like terms:

\(\displaystyle \frac{-18b^5}{12a^3c^{1}}\)

 

Simplify the integers:

\(\displaystyle \frac{-3b^5}{2a^3c}\)

Example Question #1 : Simplifying Polynomials

Simplify the following polynomial:

\(\displaystyle (5n^{3x}-2m^{x+2})^2\)

Possible Answers:

\(\displaystyle 5n^{6x}-20n^{3x}m^{x+2}+4m^{2x+4}\)

\(\displaystyle 25n^{6x}-20n^{3x}m^{x+2}+4m^{2x+4}\)

\(\displaystyle 10n^{6x}-20n^{3x}m^{x+2}+2m^{2x+4}\)

\(\displaystyle 25n^{6x}-20n^{3x}m^{x+2}+2m^{2x+4}\)

\(\displaystyle 25n^{6x}-10n^{3x}m^{x+2}+4m^{2x+4}\)

Correct answer:

\(\displaystyle 25n^{6x}-20n^{3x}m^{x+2}+4m^{2x+4}\)

Explanation:

Squaring the polynomial is equivalent to:

\(\displaystyle (5n^{3x}-2m^{x+2})^2\)

\(\displaystyle (5n^{3x}-2m^{x+2})(5n^{3x}-2m^{x+2})\)

 

Use the FOIL method to multiply the terms:

F - First

O - Outer

I - Inner

L - Last

 

\(\displaystyle 25n^{6x}-10n^{3x}m^{x+2}-10n^{3x}m^{x+2}+4m^{2x+4}\)

 

Combine like terms:

\(\displaystyle 25n^{6x}-20n^{3x}m^{x+2}+4m^{2x+4}\)

Example Question #1 : Simplifying Polynomials

Simplify the following polynomial:

\(\displaystyle (\frac{-a^{-2}b^3c^{-1}}{3a^{-4}b^{-1}c^3})^{-2}\)

Possible Answers:

\(\displaystyle \frac{9c^8}{a^{4}b^8}\)

\(\displaystyle \frac{9c^8}{a^{4}b^4}\)

\(\displaystyle \frac{c^8}{9a^{2}b^8}\)

\(\displaystyle \frac{c^8}{9a^{4}b^8}\)

\(\displaystyle \frac{9c^8}{a^{2}b^8}\)

Correct answer:

\(\displaystyle \frac{9c^8}{a^{4}b^8}\)

Explanation:

To simplify the polynomial, begin by rearranging the terms to have positive exponents:

\(\displaystyle (\frac{-a^{-2}b^3c^{-1}}{3a^{-4}b^{-1}c^3})^{-2}\)

\(\displaystyle (\frac{-a^{4}b^3b^1}{3a^{2}c^3c^1})^{-2}\)

Rearrange the terms once again so that the outer exponent is positive. Also, combine like terms:

\(\displaystyle (\frac{-3c^4}{a^{2}b^4})^{2}\)

 

Now, square the polynomial:

\(\displaystyle \frac{9c^8}{a^{4}b^8}\)

Example Question #1 : Polynomials

Simplify the following polynomial:

\(\displaystyle (5a)(6a^2b)(3ab^3)+(2a)^2(3b^3)(2a^2b)\)

Possible Answers:

\(\displaystyle 114a^4b^2\)

\(\displaystyle 114a^2b^4\)

\(\displaystyle 114a^3b^4\)

\(\displaystyle 114a^4b^4\)

\(\displaystyle 114a^4b^3\)

Correct answer:

\(\displaystyle 114a^4b^4\)

Explanation:

To simplify the polynomial, begin by combining the terms within the parentheses and multiplying the integers:

 

\(\displaystyle (5a)(6a^2b)(3ab^3)+(2a)^2(3b^3)(2a^2b)\)

\(\displaystyle 90a^4b^4+24a^4b^4\)

 

Now, add together like terms:

\(\displaystyle 90a^4b^4+24a^4b^4=114a^4b^4\)

Example Question #1 : Simplifying Polynomials

Simplify the following polynomial:

\(\displaystyle \frac{-9x^{-2}y^3z^{-1}}{3x^{-4}yz^2}\)

Possible Answers:

\(\displaystyle \frac{-3x^{2}y^4}{z^3}\)

\(\displaystyle \frac{-9x^{4}y^2}{z^3}\)

\(\displaystyle \frac{-9x^{2}y^2}{z^3}\)

\(\displaystyle \frac{-3x^{2}y^2}{z^6}\)

\(\displaystyle \frac{-3x^{2}y^2}{z^3}\)

Correct answer:

\(\displaystyle \frac{-3x^{2}y^2}{z^3}\)

Explanation:

To simplify the polynomial, begin by rearranging the terms to have positive exponents:

\(\displaystyle \frac{-9x^{-2}y^3z^{-1}}{3x^{-4}yz^2}\)

\(\displaystyle \frac{-9x^{4}y^3}{3x^{2}yz^2z^1}\)

 

Now, combine like terms:

\(\displaystyle \frac{-9x^{2}y^2}{3z^3}\)

 

Simplify the integers:

\(\displaystyle \frac{-3x^{2}y^2}{z^3}\)

Learning Tools by Varsity Tutors