ISEE Middle Level Math : Lines

Study concepts, example questions & explanations for ISEE Middle Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : How To Find Length Of A Line

Lines

Figure NOT drawn to scale.

\displaystyle AE = 40, AB = x, BC = x + 3, CD = 2x, DE = x-6

Evaluate \displaystyle AB.

Possible Answers:

\displaystyle 7.2

\displaystyle 9.6

\displaystyle 6.2

\displaystyle 8.6

\displaystyle 7.6

Correct answer:

\displaystyle 8.6

Explanation:

By the Segment Addition Postulate,

\displaystyle AB + BC + CD + DE = AE

\displaystyle x +( x + 3) +( 2x) +( x-6) = 40

\displaystyle 5x-3 = 40

\displaystyle 5x-3 +3 = 40 + 3

\displaystyle 5x = 43

\displaystyle 5x \div 5 = 43 \div 5

\displaystyle x = 8.6

\displaystyle AB = x = 8.6

Example Question #2 : How To Find Length Of A Line

What is the length of a line segment with end points \displaystyle (3,5) and \displaystyle (6,1)?

Possible Answers:

\displaystyle 7

\displaystyle 25

\displaystyle 1

\displaystyle 5

Correct answer:

\displaystyle 5

Explanation:

The length of a line segment can be determined using the distance formula:

\displaystyle D=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}

\displaystyle D=\sqrt{(3-6)^2+(5-1)^2}

\displaystyle D=\sqrt{-3^2+4^2}

\displaystyle D=\sqrt{9+16}=\sqrt{25}=5

Example Question #72 : Plane Geometry

What is the length of a line with endpoints \displaystyle (1,1) and \displaystyle (10,1).

Possible Answers:

\displaystyle 11

\displaystyle 9

\displaystyle 10

\displaystyle 12

\displaystyle 1

Correct answer:

\displaystyle 9

Explanation:

To find the length of this line, you can subtract \displaystyle 10-1 to get \displaystyle 9. Since the y-coordinates are the same, you don't have to take any vertical direction into account. Therefore, you only look at the x-coordinates!

Example Question #3 : Lines

Find the length of the line segment whose endpoints are \displaystyle (-3,5) and \displaystyle (5,4).

Possible Answers:

\displaystyle 2

\displaystyle 7

\displaystyle 6

\displaystyle 8.06

\displaystyle 5

Correct answer:

\displaystyle 8.06

Explanation:

We can use the distance formula:

 

\displaystyle D=\sqrt{(x_{1}-x_{2})^2+(y_{1}-y_{2})^2}

\displaystyle =\sqrt{(-3-5)^2+(5-4)^2}

\displaystyle =\sqrt{64+1}

\displaystyle =\sqrt{65}\approx 8.06

Example Question #1 : How To Find Length Of A Line

The point \displaystyle (4,4) lies on a circle. What is the length of the radius of the circle if the center is located at \displaystyle (3,8) ?

 

Possible Answers:

\displaystyle 3

 \displaystyle 4.12

\displaystyle 4.4

\displaystyle 3.12

\displaystyle 4

Correct answer:

 \displaystyle 4.12

Explanation:

The radius is the distance from the center of the circle to anypoint on the circle. So we can use the distance formula in order to find the radius of the circle:

 

\displaystyle D=\sqrt{(x_{1}-x_{2})^2+(y_{1}-y_{2})^2}

\displaystyle =\sqrt{(4-3)^2+(4-8)^2}

\displaystyle =\sqrt{1+16}

\displaystyle =\sqrt{17}\approx 4.12

Example Question #1 : How To Find Length Of A Line

The coordinates of \displaystyle A and \displaystyle D are \displaystyle A(4,1) and \displaystyle D(7,-1). Find the length of the diagonal of the following rectangle:

 

 

R1

Possible Answers:

\displaystyle 5

\displaystyle 3.6

\displaystyle 3

\displaystyle 4

\displaystyle 4.6

Correct answer:

\displaystyle 3.6

Explanation:

A rectangle has two diagonals with the same length. So we should find the length of \displaystyle AD. We can use the distance formula:

 

\displaystyle D=\sqrt{(x_{1}-x_{2})^2+(y_{1}-y_{2})^2}

\displaystyle =\sqrt{(4-7)^2+(1+1)^2}

\displaystyle =\sqrt{9+4}

\displaystyle =\sqrt{13}\approx 3.6

Example Question #71 : Geometry

If a circle has a radius of 12 inches, the biggest line that would be drawn within the circle is:

Possible Answers:

Correct answer:

Explanation:

The largest line that can be drawn within a circle is the diamater. The diameter is equal to twice the radius. Given that the radius is equal to 12 inches, the largest line that could be drawn (the diameter) would be equal to 24 inches. 

Example Question #4 : How To Find Length Of A Line

If you stand on a giant number line at point \displaystyle -3, what is your distance from point \displaystyle 12?

Possible Answers:

\displaystyle 12

\displaystyle 15

\displaystyle 9

\displaystyle -3

\displaystyle -15

Correct answer:

\displaystyle 15

Explanation:

The distance on a number line is the number of whole number places between two numbers.  When you are going from a negative value to a positive one or vice versa, you must find the distance from \displaystyle 0 that both points are then add them together.  \displaystyle -3 is \displaystyle 3 spaces away from \displaystyle 0 and \displaystyle 12 is \displaystyle 12 spaces away.  To find the distance you then add your two values of \displaystyle 3 and \displaystyle 12 to get \displaystyle 15.

Example Question #1 : Lines

One of the legs on a right triangle has a measurement of \displaystyle 30cm and the other leg has a measurement of \displaystyle 40cm.  What is the length of the hypotenuse?

Possible Answers:

\displaystyle 1200cm

\displaystyle 70cm

\displaystyle 50cm

\displaystyle 10cm

Correct answer:

\displaystyle 50cm

Explanation:

The Pythagorean Theorem states:

\displaystyle a^{2 } +b^{2} =c ^{2}  where \displaystyle c represents the hypotenuse and \displaystyle a and \displaystyle b represent the measurements of the legs of the right triangle.

\displaystyle 30^{2} = 30 \times30 = 900

\displaystyle 40^{2} = 40 \times 40 = 1600

\displaystyle 900 + 1600 = 2500

\displaystyle \sqrt{c^{2}} = \sqrt{2500}

\displaystyle c = 500 cm

Example Question #6 : How To Find Length Of A Line

A right triangle has one leg with a length of \displaystyle 3m and a hypotenuse of \displaystyle 8m. What is the approximate measurement of the missing length?

Possible Answers:

\displaystyle b\approx 11cm

\displaystyle b\approx 7.4cm

\displaystyle b \approx 9.5cm

\displaystyle b\approx 8.3cm

Correct answer:

\displaystyle b\approx 7.4cm

Explanation:

The Pythagorean Theorem states that

\displaystyle a^{2} +b^{2} = c^{2}

Where \displaystyle a and \displaystyle b are the measurements of each leg and \displaystyle c is the hypotenuse.

\displaystyle 3^{2} = 3 \times3 =9

\displaystyle 8^{2} = 8\times 8 = 64.

\displaystyle 9 + b^{2} = 64

\displaystyle (9-9) + b^{2} = 64-9

\displaystyle b^{2} = 55

\displaystyle \sqrt{b^{2}} = \sqrt{55}

\displaystyle b\approx 7.4cm

Learning Tools by Varsity Tutors