Linear Algebra : Eigenvalues and Eigenvectors

Study concepts, example questions & explanations for Linear Algebra

varsity tutors app store varsity tutors android store

Example Questions

Example Question #381 : Operations And Properties

Find the Eigen Values for Matrix \displaystyle A.

 

\displaystyle A=\begin{bmatrix} 5 & -3 \\ 1& -2 \end{bmatrix}

Possible Answers:

There are no Eigen Values

\displaystyle \lambda=\frac{1+ \sqrt{68}}{2}

 

\displaystyle \lambda=\frac{1- \sqrt{69}}{2}

\displaystyle \lambda=\frac{1+ \sqrt{69}}{2}

 

 

 

\displaystyle \lambda=\frac{1- \sqrt{69}}{2}

\displaystyle \lambda=\frac{1+ \sqrt{69}}{2}

 

\displaystyle \lambda=\frac{1- \sqrt{69}}{2}

Correct answer:

\displaystyle \lambda=\frac{1+ \sqrt{69}}{2}

 

\displaystyle \lambda=\frac{1- \sqrt{69}}{2}

Explanation:

The first step into solving for eigenvalues, is adding in a \displaystyle -\lambda along the main diagonal. 

\displaystyle A=\begin{bmatrix} 5-\lambda & -3 \\ 1& -4-\lambda \end{bmatrix}

Now the next step to take the determinant.

 

\displaystyle \det(A)=(5-\lambda)(-4-\lambda)-(-3)(1)

\displaystyle \det(A)=(5-\lambda)(-4-\lambda)+3

Now lets FOIL, and solve for \displaystyle \lambda.

\displaystyle (5-\lambda)(-4-\lambda)+3=-20-5\lambda+4\lambda+\lambda^2+3

\displaystyle =\lambda^2-\lambda-17

Now lets use the quadratic equation to solve for \displaystyle \lambda.

 

\displaystyle \lambda=\frac{1\pm\sqrt{(1)^2-4(1)(-17)}}{2(1)}

\displaystyle \lambda=\frac{1\pm\sqrt{1+68}}{2}

\displaystyle \lambda=\frac{1\pm\sqrt{69}}{2}

So our eigen values are

\displaystyle \lambda=\frac{1+ \sqrt{69}}{2}

 

\displaystyle \lambda=\frac{1- \sqrt{69}}{2}

Example Question #452 : Linear Algebra

Find the eigenvalues for the matrix \displaystyle \begin{bmatrix} 2 & 1\\ 3& 4\end{bmatrix}

Possible Answers:

\displaystyle 2, 4

\displaystyle 2, 5

\displaystyle 1, 3

\displaystyle 1, 5

Correct answer:

\displaystyle 1, 5

Explanation:

The eigenvalues, \displaystyle \lambda,  for the matrix are values for which the determinant of \displaystyle \begin{bmatrix} 2- \lambda & 1\\ 3 & 4 - \lambda \end{bmatrix} is equal to zero. First, find the determinant:

\displaystyle (2-\lambda)(4-\lambda) - (3)(1) = 8 - 4 \lambda - 2 \lambda + \lambda ^2 - 3 = \lambda ^2 - 6 \lambda + 5

Now set the determinant equal to zero and solve this quadratic:

\displaystyle \lambda^2 - 6 \lambda + 5 = 0 this can be factored:

\displaystyle (\lambda - 5 ) (\lambda - 1 ) = 0

The eigenvalues are 5 and 1.

 

Example Question #1 : Eigenvalues And Eigenvectors

Which is an eigenvector for \displaystyle A = \begin{bmatrix} 2 &1 \\3 &4 \end{bmatrix}, \displaystyle \mathbf{u} = \begin{bmatrix} 1\\3 \end{bmatrix} or \displaystyle \mathbf{v} = \begin{bmatrix} -3\\1 \end{bmatrix}

Possible Answers:

both \displaystyle \mathbf{u} and \displaystyle \mathbf{v}

\displaystyle \mathbf{v}

neither one is an Eigenvector

\displaystyle \mathbf{u}

Correct answer:

\displaystyle \mathbf{u}

Explanation:

To determine if something is an eignevector, multiply times A:

\displaystyle \begin{bmatrix} 2 &1 \\3 & 4\end{bmatrix} \begin{bmatrix} 1\\ 3\end{bmatrix} = \begin{bmatrix} 15\\ 5\end{bmatrix}

Since this is equivalent to \displaystyle 5\begin{bmatrix} 1\\ 3\end{bmatrix}, \displaystyle \begin{bmatrix} 1\\ 3\end{bmatrix} is an eigenvector (and 5 is an eigenvalue).

\displaystyle \begin{bmatrix} 2 & 1\\ 3& 4\end{bmatrix} \begin{bmatrix} -3\\1 \end{bmatrix} = \begin{bmatrix} -5\\ -5\end{bmatrix}

This cannot be re-written as \displaystyle \mathbf{v} times a scalar, so this is not an eigenvector.

Example Question #3 : Eigenvalues And Eigenvectors

Find the eigenvalues for the matrix \displaystyle \begin{bmatrix} -3 &6 \\ 2& 1 \end{bmatrix}

Possible Answers:

\displaystyle 3, -1

\displaystyle 5, 3

\displaystyle 3, -5

\displaystyle -3, 2

\displaystyle 5, -1

Correct answer:

\displaystyle 3, -5

Explanation:

The eigenvalues are scalar quantities, \displaystyle \lambda, where the determinant of \displaystyle \begin{bmatrix} -3-\lambda & 6 \\ 2& 1-\lambda \end{bmatrix} is equal to zero.

First, find an expression for the determinant:

\displaystyle (-3-\lambda)(1-\lambda) - 12

\displaystyle =-3 - \lambda + 3 \lambda + \lambda ^2 - 12 = \lambda ^2 + 2 \lambda -15

Now set this equal to zero, and solve:

\displaystyle \lambda^2 + 2 \lambda -15 = 0 this can be factored (or solved in another way)

\displaystyle (\lambda+ 5) (\lambda-3) = 0

The eigenvalues are -5 and 3.

Example Question #4 : Eigenvalues And Eigenvectors

Which is an eigenvector for \displaystyle A = \begin{bmatrix} -3 & 6\\ 2& 1\end{bmatrix}, \displaystyle \mathbf{u} = \begin{bmatrix} -3\\1 \end{bmatrix} or \displaystyle \mathbf{v} = \begin{bmatrix} 1\\ 1\end{bmatrix} ?

Possible Answers:

\displaystyle \mathbf{u}

\displaystyle \mathbf{v}

Neither is an eigenvector

Both \displaystyle \mathbf{u} and \displaystyle \mathbf{v}

Correct answer:

Both \displaystyle \mathbf{u} and \displaystyle \mathbf{v}

Explanation:

To determine if something is an eigenvector, multiply by the matrix A: 

\displaystyle \begin{bmatrix} -3 & 6\\ 2& 1\end{bmatrix} \begin{bmatrix} -3\\ 1\end{bmatrix} = \begin{bmatrix} 15\\ -5 \end{bmatrix}

This is equivalent to \displaystyle -5\begin{bmatrix} -3\\ 1\end{bmatrix} so this is an eigenvector.

\displaystyle \begin{bmatrix} -3 & 6\\ 2& 1\end{bmatrix} \begin{bmatrix} 1\\ 1\end{bmatrix} = \begin{bmatrix} 3\\ 3 \end{bmatrix}

This is equivalent to \displaystyle 3\begin{bmatrix} 1\\ 1\end{bmatrix} so this is also an eigenvector.

 

Example Question #1 : Eigenvalues And Eigenvectors

Determine the eigenvalues for the matrix \displaystyle \begin{bmatrix} -5 &2 \\ 3 &-4 \end{bmatrix}

Possible Answers:

\displaystyle 2,7

\displaystyle -7, -2

\displaystyle -7,2

\displaystyle 7, -2

Correct answer:

\displaystyle -7, -2

Explanation:

The eigenvalues are scalar quantities \displaystyle \lambda where the determinant of \displaystyle \begin{bmatrix} -5-\lambda & 2\\ 3& -4-\lambda\end{bmatrix} is equal to zero. First, write an expression for the determinant:

\displaystyle (-5-\lambda) (-4-\lambda) -6 = 0

\displaystyle 20 + 4\lambda+5 \lambda + \lambda^2 - 6 = 0

\displaystyle \lambda^2 + 9 \lambda +14 = 0 this can be solved by factoring:

\displaystyle (\lambda+2) (\lambda+7) = 0

The solutions are -2 and -7

Example Question #6 : Eigenvalues And Eigenvectors

Which is an eigenvector for the matrix \displaystyle A = \begin{bmatrix} -5 &2 \\ 3& -4\end{bmatrix}\displaystyle \mathbf{u} = \begin{bmatrix} -2\\ 3\end{bmatrix} or \displaystyle \mathbf{v} = \begin{bmatrix} 2\\ 3\end{bmatrix}

Possible Answers:

Neither one is an eigenvector

Both \displaystyle \mathbf{u} and \displaystyle \mathbf{v}

\displaystyle \mathbf{u}

\displaystyle \mathbf{v}

Correct answer:

\displaystyle \mathbf{v}

Explanation:

To determine if a vector is an eigenvector, multiply with A:

\displaystyle \begin{bmatrix} -5 & 2\\ 3& -4 \end{bmatrix} \begin{bmatrix} -2\\ 3\end{bmatrix} = \begin{bmatrix} 16\\-18 \end{bmatrix}. This cannot be expressed as an integer times \displaystyle \mathbf{u}, so \displaystyle \mathbf{u} is not an eigenvector

 

\displaystyle \begin{bmatrix} -5 & 2\\ 3& -4 \end{bmatrix} \begin{bmatrix} 2\\ 3\end{bmatrix} = \begin{bmatrix} -4\\-6 \end{bmatrix} This can be expressed as \displaystyle -2\begin{bmatrix} 2\\ 3\end{bmatrix}, so \displaystyle \mathbf{v} is an eigenvector.

Example Question #1 : Eigenvalues And Eigenvectors

\displaystyle \begin{align*}&\text{Find any and all eigenvalues for the matrix }\\&A=\begin{bmatrix}6&-13\\8&-19\end{bmatrix}\end{align*}

Possible Answers:

\displaystyle \lambda_{1}=9.73;\lambda_{2}=-4.73

\displaystyle \lambda_{1}=1.73;\lambda_{2}=-12.73

\displaystyle \lambda_{1}=0.73;\lambda_{2}=-13.73

\displaystyle \lambda_{1}=-3.27;\lambda_{2}=-17.73

Correct answer:

\displaystyle \lambda_{1}=0.73;\lambda_{2}=-13.73

Explanation:

\displaystyle \begin{align*}&\text{Eigenvalues of a matrix, typically noted as }\lambda\text{, are those values which satisfy}\\&det(A-\lambda I)\text{(I being the identity matrix). For the matrix }A=\begin{bmatrix}6&-13\\8&-19\end{bmatrix}\\&\text{We can represent that equation as follows }\begin{bmatrix}6 - \lambda &-13\\8&- \lambda - 19\end{bmatrix} \\&\text{For a square matrix with dimensions of }2\\&det\begin{vmatrix} a&b \\ c&d \end{vmatrix}=ad-bc\\&\text{From that, we can find the eigenvalues:}\\&13\lambda + \lambda ^{2} - 10\\&\lambda_{1}=0.73;\lambda_{2}=-13.73\end{align*}

Example Question #9 : Eigenvalues And Eigenvectors

\displaystyle \begin{align*}&\text{Calculate the eigenvalues for the matrix }\\&\begin{bmatrix}0&-2\\6&9\end{bmatrix}\end{align*}

Possible Answers:

\displaystyle \lambda_{1}=-4.37;\lambda_{2}=1.37

\displaystyle \lambda_{1}=8.63;\lambda_{2}=14.37

\displaystyle \lambda_{1}=4.63;\lambda_{2}=10.37

\displaystyle \lambda_{1}=1.63;\lambda_{2}=7.37

Correct answer:

\displaystyle \lambda_{1}=1.63;\lambda_{2}=7.37

Explanation:

\displaystyle \begin{align*}&\text{Eigenvalues of a matrix A, often denoted as }\lambda\text{, are values which satisfy}\\&det(A-\lambda I)\text{, where I represents the identity matrix. For the given matrix }\begin{bmatrix}0&-2\\6&9\end{bmatrix}\\&\text{We can write a matrix of the form }\begin{bmatrix}-\lambda&-2\\6&9 - \lambda\end{bmatrix}\\&\text{For a square matrix with dimensions of }2\\&det\begin{vmatrix} a&b \\ c&d \end{vmatrix}=ad-bc\\&\text{Knowing this, we can expand and solve:}\\&\lambda ^{2} - 9\lambda + 12\\&\lambda_{1}=1.63;\lambda_{2}=7.37\end{align*}

Example Question #1 : Eigenvalues And Eigenvectors

\displaystyle \begin{align*}&\text{Find any and all eigenvalues for the matrix }\\&A=\begin{bmatrix}-7&3&-11\\10&-10&0\\8&16&19\end{bmatrix}\end{align*}

Possible Answers:

\displaystyle \lambda_{1}=9.29+5.19i;\lambda_{2}=9.29-5.19i;\lambda_{3}=-16.59

\displaystyle \lambda_{1}=11.29+5.19i;\lambda_{2}=11.29-5.19i;\lambda_{3}=-14.59

\displaystyle \lambda_{1}=18.29+5.19i;\lambda_{2}=18.29-5.19i;\lambda_{3}=-7.59

\displaystyle \lambda_{1}=13.29+5.19i;\lambda_{2}=13.29-5.19i;\lambda_{3}=-12.59

Correct answer:

\displaystyle \lambda_{1}=9.29+5.19i;\lambda_{2}=9.29-5.19i;\lambda_{3}=-16.59

Explanation:

\displaystyle \begin{align*}&\text{Eigenvalues of a matrix, typically noted as }\lambda\text{, are those values which satisfy}\\&det(A-\lambda I)\text{(I being the identity matrix). For the matrix }A=\begin{bmatrix}-7&3&-11\\10&-10&0\\8&16&19\end{bmatrix}\\&\text{We can represent that equation as follows }\begin{bmatrix}- \lambda - 7&3&-11\\10&- \lambda - 10&0\\8&16&19 - \lambda\end{bmatrix}\\&\text{For a square matrix with dimensions of }3\\&det\begin{vmatrix} a&b&c \\ d&e&f\\g&h&i \end{vmatrix}=a(ei-fh)-b(di-fg)+c(dh-eg)\\&\text{From that, we can find the eigenvalues:}\\&(-1)\cdot (\lambda ^{3} - 2\lambda ^{2} - 195\lambda + 1880)\\&\lambda_{1}=9.29+5.19i;\lambda_{2}=9.29-5.19i;\lambda_{3}=-16.59\end{align*}

Learning Tools by Varsity Tutors