### All Precalculus Resources

## Example Questions

### Example Question #1 : Ellipses

Find the focal points of the conic below:

**Possible Answers:**

**Correct answer:**

The first thing we want to do is put the conic (an ellipse because the x^{2 }and the y^{2} terms have the same sign) into a better form i.e.

where (h,k) is the center of our ellipse.

We will continue by completing the square for both the x and y binomials.

First we seperate them into two trinomials:

then we pull a 27 out of the first one and a 16 out of the second

then we add the correct constant to each trinomial (being sure to add the same amount to the other side of our equation.

then we factor our trinomials and divide by 16 and 27 to get

so the center of our ellipse is (-6,3) and we calculate the distance from the focal points to the center by the equation:

and we know that our ellipse is stretched in the y direction because b>a so our focal points will be c displaced from our center.

with

our focal points are

### Example Question #1 : Conic Sections

Find the center of this ellipse:

**Possible Answers:**

**Correct answer:**

To find the center of this ellipse we need to put it into a better form. We do this by rearranging our terms and completing the square for both our y and x terms.

completing the square for both gives us this.

we could divide by 429 but we have the information we need. The center of our ellipse is

### Example Question #7 : Conic Sections

What is the equation of the elipse centered at the origin and passing through the point (5, 0) with major radius 5 and minor radius 3?

**Possible Answers:**

**Correct answer:**

The equation of an ellipse is

,

where a is the horizontal radius, b is the vertical radius, and (h, k) is the center of the ellipse. In this case we are told that the center is at the origin, or (0,0), so both h and k equal 0. That brings us to:

We are told about the major and minor radiuses, but the problem does not specify which one is horizontal and which one vertical. However it does tell us that the ellipse passes through the point (5, 0), which is in a horizontal line with the center, (0, 0). Therefore the horizontal radius is 5.

The vertical radius must then be 3. We can now plug these in:

### Example Question #1 : Ellipses

An ellipse is centered at (-3, 2) and passes through the points (-3, 6) and (4, 2). Determine the equation of this eclipse.

**Possible Answers:**

**Correct answer:**

The usual form for an ellipse is

,

where (h, k) is the center of the ellipse, a is the horizontal radius, and b is the vertical radius.

Plug in the coordinate pair:

Now we have to find the horizontal radius and the vertical radius. Let's compare points; we are told the ellipse passes through the point (-3, 6), which is vertically aligned with the center. Therefore the vertical radius is 4.

Similarly, the ellipse passes through the point (4, 2), which is horizontally aligned with the center. This means the horizontal radius must be 7.

Substitute:

### Example Question #1 : Conic Sections

What is the shape of the graph indicated by the equation?

**Possible Answers:**

Ellipse

Parabola

Circle

Hyperbola

**Correct answer:**

Ellipse

An ellipse has an equation that can be written in the format. The center is indicated by , or in this case .

Certified Tutor