Precalculus : Convert Polar Equations To Rectangular Form and vice versa

Study concepts, example questions & explanations for Precalculus

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Polar Coordinates

Convert from polar form to rectangular form:

\(\displaystyle r=4\cos\theta\)

Possible Answers:

\(\displaystyle (x-2)^2+y^2=4\)

\(\displaystyle (x+y)^2=4\)

\(\displaystyle (x+2)^2+y^2=4\)

\(\displaystyle x^2+y^2+4=0\)

Correct answer:

\(\displaystyle (x-2)^2+y^2=4\)

Explanation:

Start by multiplying both sides by \(\displaystyle r\).

\(\displaystyle r=4\cos\theta\)

\(\displaystyle r^2=4r\cos\theta\)

Keep in mind that \(\displaystyle r^2=x^2+y^2\)

\(\displaystyle x^2+y^2=4r\cos\theta\)

Remember that \(\displaystyle x=r\cos\theta\)

So then,

\(\displaystyle x^2+y^2=4x\)

\(\displaystyle x^2-4x+y^2=0\)

Now, complete the square.

\(\displaystyle (x^2-4x+4)+y^2=4\)

\(\displaystyle (x-2)^2+y^2=4\)

Example Question #2 : Polar Coordinates

Convert the polar equation to rectangular form:

\(\displaystyle r=8\sin\theta\)

Possible Answers:

\(\displaystyle x^2+(y-4)^2=16\)

\(\displaystyle x^2+(y+4)^2=16\)

\(\displaystyle (x+y-4)^2=16\)

\(\displaystyle (x-4)^2+y^2=15\)

Correct answer:

\(\displaystyle x^2+(y-4)^2=16\)

Explanation:

Start by multiplying both sides by \(\displaystyle r\).

\(\displaystyle r=8\sin\theta\)

\(\displaystyle r^2=8r\sin\theta\)

Remember that \(\displaystyle r^2=x^2+y^2\)

\(\displaystyle x^2+y^2=8r\sin\theta\)

Keep in mind that \(\displaystyle y=r\sin\theta\)

So then,

\(\displaystyle x^2+y^2=8y\)

\(\displaystyle x^2+y^2-8x=0\)

Now, complete the square.

\(\displaystyle x^2+(y^2-8x+16)=16\)

\(\displaystyle x^2+(y-4)^2=16\)

This is a graph of a circle with a radius of \(\displaystyle 4\) and a center at \(\displaystyle (0, 4)\)

Example Question #1 : Convert Polar Equations To Rectangular Form And Vice Versa

Convert the polar equation into rectangular form:

\(\displaystyle r=8\sec\theta\)

Possible Answers:

\(\displaystyle x^2+y^2=8\)

\(\displaystyle y=8\)

\(\displaystyle (x-1)^2+y^2=64\)

\(\displaystyle x=8\)

Correct answer:

\(\displaystyle x=8\)

Explanation:

Remember that \(\displaystyle \sec\theta=\frac{1}{\cos\theta}\)

So then \(\displaystyle r=8\sec\theta\) becomes

\(\displaystyle r=\frac{8}{\cos\theta}\)

Now, multiply both sides by \(\displaystyle \cos\theta\) to get rid of the fraction.

\(\displaystyle r\cos\theta=8\)

Since \(\displaystyle x=r\cos\theta,\) the rectangular form of this equation is

\(\displaystyle x=8\)

Example Question #1 : Convert Polar Equations To Rectangular Form And Vice Versa

Convert the polar equation into rectangular form:

\(\displaystyle r^2=4\sin(2\theta)\)

Possible Answers:

\(\displaystyle (x^2+y^2)^2=8xy\)

\(\displaystyle (x^2+y^2)^2=8\)

\(\displaystyle (x^2-^2)^2=8xy\)

\(\displaystyle (x^2+y^2+8)=16\)

Correct answer:

\(\displaystyle (x^2+y^2)^2=8xy\)

Explanation:

Start by using the double angle formula for \(\displaystyle \sin\).

\(\displaystyle \sin(2\theta)=2\sin\theta\cos\theta\)

Substitute that into the equation gives the following:

\(\displaystyle r^2=4(2\sin\theta\cos\theta)\)

\(\displaystyle r^2=8\sin\theta\cos\theta\)

Because we need \(\displaystyle r\cos\theta\) and \(\displaystyle r\sin\theta\) to get \(\displaystyle x\) and \(\displaystyle y\) respectively, multiply both sides by \(\displaystyle r^2\).

\(\displaystyle (r^2)(r^2)=8(r\sin\theta)(r\cos\theta)\)

Now, recall that \(\displaystyle r^2=x^2+y^2\).

\(\displaystyle (x^2+y^2)(x^2+y^2)=8xy\)

\(\displaystyle (x^2+y^2)^2=8xy\)

Example Question #2 : Convert Polar Equations To Rectangular Form And Vice Versa

Convert the polar equation to rectangular form:

\(\displaystyle \theta=\frac{5\pi}{6}\)

Possible Answers:

\(\displaystyle y=-3x\)

\(\displaystyle y=-\frac{3}\sqrt3}x\)

\(\displaystyle y=-\frac{\sqrt3}{3}x\)

\(\displaystyle y=-\sqrt3x\)

Correct answer:

\(\displaystyle y=-\frac{\sqrt3}{3}x\)

Explanation:

Start by taking the tangent.

\(\displaystyle \tan\theta=\tan\frac{5\pi}{6}\)

\(\displaystyle \tan\theta=-\frac{\sqrt3}{3}\)

Recall that \(\displaystyle \tan\theta=\frac{y}{x}\)

\(\displaystyle \frac{y}{x}=-\frac{\sqrt3}{3}\)

\(\displaystyle y=-\frac{\sqrt3}{3}x\)

Example Question #3 : Polar Coordinates

Convert the polar equation to rectangular form:

\(\displaystyle \theta=\frac{5\pi}{4}\)

Possible Answers:

\(\displaystyle y=\frac{5\pi}{4}\)

\(\displaystyle y=-x\)

\(\displaystyle y=x\)

\(\displaystyle x=\frac{5\pi}{4}\)

Correct answer:

\(\displaystyle y=x\)

Explanation:

Start by taking the tangent.

\(\displaystyle \tan\theta=\tan\frac{5\pi}{4}\)

\(\displaystyle \tan\theta=1\)

Recall that \(\displaystyle \tan\theta=\frac{y}{x}\)

\(\displaystyle \frac{y}{x}=1\)

\(\displaystyle y=x\)

Example Question #1 : Convert Polar Equations To Rectangular Form And Vice Versa

Convert the polar equation to rectangular form:

\(\displaystyle r=4\sec\theta\tan\theta\)

Possible Answers:

\(\displaystyle y=2\sqrt x\)

\(\displaystyle y=\frac{1}{4}x^2\)

\(\displaystyle y=\frac{1}{2}x^2\)

\(\displaystyle x=4y^2\)

Correct answer:

\(\displaystyle y=\frac{1}{4}x^2\)

Explanation:

Recall that \(\displaystyle \sec\theta=\frac{1}{\cos\theta}\)

Substituting this into the given equation gives

\(\displaystyle r=4\frac{1}{\cos\theta}\tan\theta\)

Multiply both sides by \(\displaystyle \cos\theta\) to get rid of the fraction.

\(\displaystyle r\cos\theta=4\tan\theta\)

Recall that \(\displaystyle x=r\cos\theta\) and that \(\displaystyle \tan\theta=\frac{y}{x}\)

\(\displaystyle x=4\frac{y}{x}\)

\(\displaystyle 4y=x^2\)

\(\displaystyle y=\frac{1}{4}x^2\)

Example Question #1 : Convert Polar Equations To Rectangular Form And Vice Versa

Convert the polar equation into rectangular form:

\(\displaystyle r=2\csc\theta\cot\theta\)

Possible Answers:

\(\displaystyle y=2x^2\)

\(\displaystyle y=\sqrt{\frac{x}{2}}\)

\(\displaystyle y=\sqrt{2x}\)

\(\displaystyle y=-\sqrt{2x}\)

Correct answer:

\(\displaystyle y=\sqrt{2x}\)

Explanation:

Recall that \(\displaystyle \csc\theta=\frac{1}{sin\theta}\) and \(\displaystyle \cot\theta=\frac{1}{tan\theta}\)

\(\displaystyle r=2\frac{1}{\sin\theta}\frac{1}{\tan\theta}\)

Multiply both sides by \(\displaystyle \sin\theta\)

\(\displaystyle r\sin\theta=2(\frac{1}{\tan\theta})\)

Recall that \(\displaystyle \tan\theta=\frac{y}{x}\) and \(\displaystyle r\sin\theta=y\)

 

\(\displaystyle y=2(\frac{1}{\frac{y}{x}})\)

\(\displaystyle y=2(\frac{x}{y})\)

\(\displaystyle 2x=y^2\)

\(\displaystyle y=\sqrt{2x}\)

Example Question #1 : Convert Polar Equations To Rectangular Form And Vice Versa

Convert the polar equation into rectangular form:

\(\displaystyle r=-3\sec\theta\)

Possible Answers:

\(\displaystyle x^2+y^2=-3\)

\(\displaystyle (x-3)^2=4\)

\(\displaystyle x=-3\)

\(\displaystyle y=-3\)

Correct answer:

\(\displaystyle x=-3\)

Explanation:

Recall that \(\displaystyle \sec\theta=\frac{1}{\cos\theta}\)

Plugging this into the equation gives us

\(\displaystyle r=-3\frac{1}{\cos\theta}\)

Multiply both sides by \(\displaystyle \cos\theta\) to get rid of the fraction.

\(\displaystyle r\cos\theta=-3\)

Recall that \(\displaystyle r\cos\theta=x\)

So then the rectangular form of the equation is \(\displaystyle x=-3\)

Example Question #1 : Convert Polar Equations To Rectangular Form And Vice Versa

Convert the polar equation into rectangular form.

\(\displaystyle 6r=\csc\theta\)

Possible Answers:

\(\displaystyle y^2=6\)

\(\displaystyle y=\frac{1}{6}\)

\(\displaystyle y=6\)

\(\displaystyle x=\frac{1}{6}\)

Correct answer:

\(\displaystyle y=\frac{1}{6}\)

Explanation:

Recall that \(\displaystyle \csc\theta=\frac{1}{\sin\theta}\)

\(\displaystyle 6r=\frac{1}{\sin\theta}\)

Multiply both sides by \(\displaystyle \sin\theta\) to get rid of the fraction.

\(\displaystyle 6r\sin\theta=1\)

Recall that \(\displaystyle y=r\sin\theta\).

\(\displaystyle 6y=1\)

\(\displaystyle y=\frac{1}{6}\)

Learning Tools by Varsity Tutors