Precalculus : Graphs and Inverses of Trigonometric Functions

Study concepts, example questions & explanations for Precalculus

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Trigonometry

Triangle

What is the \(\displaystyle \sin C\)?

Possible Answers:

\(\displaystyle \frac{AC}{AB}\)

\(\displaystyle \frac{BC}{AC}\)

\(\displaystyle \frac{BC}{AB}\)

 

\(\displaystyle \frac{AB}{AC}\)

\(\displaystyle \frac{AB}{BC}\)

Correct answer:

\(\displaystyle \frac{AB}{AC}\)

Explanation:

\(\displaystyle \sin X = \frac{OPPOSITE}{HYPOTENUSE}\)

 

\(\displaystyle \sin C = \frac{AB}{AC}\)

Example Question #2 : Trigonometry

Triangle

In the right triangle above, which of the following expressions gives the length of y?

Possible Answers:

\(\displaystyle \cos(x\times \theta)\)

\(\displaystyle x\tan\theta\)

\(\displaystyle \frac{\sin(x)}{\theta}\)

\(\displaystyle x\sin\theta\)

\(\displaystyle x\cos\theta\)

Correct answer:

\(\displaystyle x\cos\theta\)

Explanation:

\(\displaystyle \cos\theta\) is defined as the ratio of the adjacent side to the hypotenuse, or in this case \(\displaystyle \frac{y}{x}\). Solving for y gives the correct expression.

Example Question #1 : Arcsin, Arccos, Arctan

Trig_id

What is \(\displaystyle \theta\) if \(\displaystyle o=10\) and \(\displaystyle a=8\)?

Possible Answers:

\(\displaystyle 53.14^{\circ}\)

\(\displaystyle 89.60^{\circ}\)

\(\displaystyle 55.14^{\circ}\)

\(\displaystyle 0.90^{\circ}\)

\(\displaystyle 51.34^{\circ}\)

Correct answer:

\(\displaystyle 51.34^{\circ}\)

Explanation:

In order to find \(\displaystyle \theta\) we need to utilize the given information in the problem.  We are given the opposite and adjacent sides.  We can then, by definition, find the \(\displaystyle \tan\) of \(\displaystyle \theta\) and its measure in degrees by utilizing the \(\displaystyle \arctan\) function.

\(\displaystyle \tan=\frac{opposite}{adjacent}\)

\(\displaystyle \tan=\frac{10}{8}\)

\(\displaystyle \tan=1.25\)

Now to find the measure of the angle using the \(\displaystyle \arctan\) function.

\(\displaystyle \theta=\arctan1.25\)

\(\displaystyle \rightarrow 51.34^{\circ}\)

If you calculated the angle's measure to be \(\displaystyle 0.90^{\circ}}\) then your calculator was set to radians and needs to be set on degrees.

Example Question #4 : Graphing The Sine And Cosine Functions

Trig_id

If \(\displaystyle \theta\) equals \(\displaystyle 55^{\circ}\) and \(\displaystyle h\) is \(\displaystyle 15ft\), how long is \(\displaystyle o\)

Possible Answers:

Not enough information to solve

\(\displaystyle 8.6ft\)

\(\displaystyle 12.3ft\)

\(\displaystyle 13.2ft\)

\(\displaystyle 11.3ft\)

Correct answer:

\(\displaystyle 12.3ft\)

Explanation:

This problem can be easily solved using trig identities.  We are given the hypotenuse \(\displaystyle (15ft)\) and \(\displaystyle \theta (55^{\circ})\).  We can then calculate side \(\displaystyle o\) using the \(\displaystyle \sin\).

\(\displaystyle \sin=\frac{opposite}{hypotenuse}\)

\(\displaystyle \sin55^{\circ}=\frac{o}{15ft}\)

Rearrange to solve for \(\displaystyle o\).

\(\displaystyle o=\sin55^{\circ}*15ft\)

\(\displaystyle \dpi{100} \rightarrow 12.3ft\)

If you calculated the side to equal \(\displaystyle 8.6ft\) then you utilized the \(\displaystyle \cos\) function rather than the \(\displaystyle \sin\).

Example Question #2 : Finding Sides

Triangle

What is the length of CB?

Possible Answers:

\(\displaystyle \frac{AB}{\sin A}\)

\(\displaystyle \frac{\tan C}{AB}\)

\(\displaystyle \frac{AC}{\sin A}\)

\(\displaystyle \frac{\sin B}{AC}\)

\(\displaystyle \frac{AB}{\tan C}\)

Correct answer:

\(\displaystyle \frac{AB}{\tan C}\)

Explanation:

\(\displaystyle \tan X= \frac{OPPOSITE}{ADJACENT}\)

\(\displaystyle \tan C=\frac{AB}{CB}\)

\(\displaystyle CB= \frac{AB}{\tan C}\)

Example Question #61 : Pre Calculus

Rt_triangle_letters

In this figure, angle \(\displaystyle a=30^\circ\). If side \(\displaystyle Z =12\) and \(\displaystyle Y=20\), what is the value of angle \(\displaystyle b\)?

Possible Answers:

\(\displaystyle 0.83^\circ\)

\(\displaystyle 24^\circ\)

\(\displaystyle 90^\circ\)

\(\displaystyle 56.44^\circ\)

Undefined

Correct answer:

\(\displaystyle 56.44^\circ\)

Explanation:

For this problem, use the law of sines:

\(\displaystyle \frac{\text{side opposite }a}{\sin(a)}=\frac{\text{side opposite }b}{\sin(b)}=\frac{\text{side opposite }c}{\sin(c)}\).

In this case, we have values that we can plug in:

\(\displaystyle \frac{\text{side opposite }a}{\sin(a)}=\frac{\text{side opposite }b}{\sin(b)}\)

\(\displaystyle \frac{Z}{\sin(a)}=\frac{Y}{\sin{(b)}}\)

\(\displaystyle \frac{12}{\sin(30^\circ)}=\frac{20}{\sin{(b)}}\)

\(\displaystyle 24=\frac{20}{\sin(b)}\)

\(\displaystyle \sin(b)=\frac{20}{24}\)

\(\displaystyle b=\sin^{-1}(\frac{20}{24})\)

\(\displaystyle b=56.44^\circ\)

Example Question #1 : Graphs And Inverses Of Trigonometric Functions

Rt_triangle_lettersIn this figure, if angle \(\displaystyle a=18.5^\circ\), side \(\displaystyle Z =30.2\), and side \(\displaystyle Y=17.2\), what is the value of angle \(\displaystyle b\)?

(NOTE: Figure not necessarily drawn to scale.)

Possible Answers:

\(\displaystyle 33.6^\circ\)

\(\displaystyle 61.22^\circ\)

\(\displaystyle 10.41^\circ\)

Undefined

\(\displaystyle 71.5^\circ\)

Correct answer:

\(\displaystyle 10.41^\circ\)

Explanation:

First, observe that this figure is clearly not drawn to scale. Now, we can solve using the law of sines:

\(\displaystyle \frac{\text{side opposite }a}{\sin(a)}=\frac{\text{side opposite }b}{\sin(b)}=\frac{\text{side opposite }c}{\sin(c)}\).

In this case, we have values that we can plug in:

\(\displaystyle \frac{\text{side opposite }a}{\sin(a)}=\frac{\text{side opposite }b}{\sin(b)}\)

\(\displaystyle \frac{Z}{\sin(a)}=\frac{Y}{\sin{(b)}}\)

\(\displaystyle \frac{30.2}{\sin(18.5^\circ)}=\frac{17.2}{\sin{(b)}}\)

\(\displaystyle 95.18=\frac{17.2}{\sin(b)}\)

\(\displaystyle \sin(b)=\frac{17.2}{95.18}\)

\(\displaystyle b=\sin^{-1}(\frac{17.2}{95.18})\)

\(\displaystyle b=10.41^\circ\)

Example Question #1 : Trigonometric Functions

Rt_triangle_letters

In this figure, if angle \(\displaystyle c=90^\circ\), side \(\displaystyle X=12\), and side \(\displaystyle Z=8\), what is the measure of angle \(\displaystyle a\)?

Possible Answers:

\(\displaystyle 41.8^\circ\)

\(\displaystyle \frac{2}{3}^\circ\)

\(\displaystyle 90^\circ\)

Undefined

\(\displaystyle 48.2^\circ\)

Correct answer:

\(\displaystyle 41.8^\circ\)

Explanation:

Since \(\displaystyle c=90^\circ\), we know we are working with a right triangle.

That means that \(\displaystyle \sin(\theta)=\frac{\text{opposite}}{\text{hypotenuse}}\).

In this problem, that would be:

\(\displaystyle \sin(a)=\frac{\text{Z}}{\text{X}}\)

Plug in our given values:

\(\displaystyle \sin(a)=\frac{8}{12}\)

\(\displaystyle \sin(a)=\frac{2}{3}\)

\(\displaystyle a=\sin^{-1}(\frac{2}{3})\)

\(\displaystyle a=41.8^\circ\)

Example Question #4 : Graphing The Sine And Cosine Functions

Rt_triangle_letters

In this figure, \(\displaystyle X=12\)\(\displaystyle Y=6\sqrt{3}\), and \(\displaystyle Z=6\). What is the value of angle \(\displaystyle a\)?

Possible Answers:

\(\displaystyle 30^\circ\)

\(\displaystyle 60^\circ\)

Undefined

\(\displaystyle 45^\circ\)

\(\displaystyle 90^\circ\)

Correct answer:

\(\displaystyle 30^\circ\)

Explanation:

Notice that these sides fit the pattern of a 30:60:90 right triangle: \(\displaystyle x:x\sqrt{3}:2x\).

In this case, \(\displaystyle x=6\).

Since angle \(\displaystyle a\) is opposite \(\displaystyle x\), it must be \(\displaystyle 30^\circ\).

Example Question #64 : Pre Calculus

A triangle has angles of \(\displaystyle 30^\circ:60^\circ:90^\circ\). If the side opposite the \(\displaystyle 30^\circ\) angle is \(\displaystyle 7\), what is the length of the side opposite \(\displaystyle 60^\circ\)?

Possible Answers:

\(\displaystyle \frac{7\sqrt{2}}{2}\)

\(\displaystyle 7\sqrt{3}\)

\(\displaystyle 7\sqrt{2}\)

\(\displaystyle 14\sqrt{3}\)

\(\displaystyle 14\)

Correct answer:

\(\displaystyle 7\sqrt{3}\)

Explanation:

The pattern for \(\displaystyle 30^\circ:60^\circ:90^\circ\) is that the sides will be \(\displaystyle x:x\sqrt{3}:2x\).

If the side opposite \(\displaystyle 30^\circ\) is \(\displaystyle 7\), then the side opposite \(\displaystyle 60^\circ\) will be \(\displaystyle 7\sqrt{3}\).

Learning Tools by Varsity Tutors