Precalculus : Polar Coordinates

Study concepts, example questions & explanations for Precalculus

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Convert Polar Coordinates To Rectangular Coordinates

Convert the polar coordinates to rectangular coordinates:

\displaystyle \left(5, \frac{3\pi}{2}\right)

Possible Answers:

\displaystyle (0, -5)

\displaystyle (-5, -5)

\displaystyle (-5, 0)

\displaystyle (5, 0)

Correct answer:

\displaystyle (0, -5)

Explanation:

To convert polar coordinates \displaystyle (r, \theta) to rectangular coordinates \displaystyle (x, y),

\displaystyle x=r\cos\theta

\displaystyle y=r\sin\theta

Using the information given in the question, 

\displaystyle x=5\cos \frac{3\pi}{2}=5(0)=0

\displaystyle y=5 \sin \frac{3\pi}{2}=5(-1)=-5

The rectangular coordinates are \displaystyle (0, -5)

Example Question #1 : Polar Coordinates

Convert from polar form to rectangular form:

\displaystyle r=4\cos\theta

Possible Answers:

\displaystyle (x-2)^2+y^2=4

\displaystyle (x+y)^2=4

\displaystyle (x+2)^2+y^2=4

\displaystyle x^2+y^2+4=0

Correct answer:

\displaystyle (x-2)^2+y^2=4

Explanation:

Start by multiplying both sides by \displaystyle r.

\displaystyle r=4\cos\theta

\displaystyle r^2=4r\cos\theta

Keep in mind that \displaystyle r^2=x^2+y^2

\displaystyle x^2+y^2=4r\cos\theta

Remember that \displaystyle x=r\cos\theta

So then,

\displaystyle x^2+y^2=4x

\displaystyle x^2-4x+y^2=0

Now, complete the square.

\displaystyle (x^2-4x+4)+y^2=4

\displaystyle (x-2)^2+y^2=4

Example Question #2 : Polar Coordinates

Convert the polar equation to rectangular form:

\displaystyle r=8\sin\theta

Possible Answers:

\displaystyle x^2+(y-4)^2=16

\displaystyle x^2+(y+4)^2=16

\displaystyle (x+y-4)^2=16

\displaystyle (x-4)^2+y^2=15

Correct answer:

\displaystyle x^2+(y-4)^2=16

Explanation:

Start by multiplying both sides by \displaystyle r.

\displaystyle r=8\sin\theta

\displaystyle r^2=8r\sin\theta

Remember that \displaystyle r^2=x^2+y^2

\displaystyle x^2+y^2=8r\sin\theta

Keep in mind that \displaystyle y=r\sin\theta

So then,

\displaystyle x^2+y^2=8y

\displaystyle x^2+y^2-8x=0

Now, complete the square.

\displaystyle x^2+(y^2-8x+16)=16

\displaystyle x^2+(y-4)^2=16

This is a graph of a circle with a radius of \displaystyle 4 and a center at \displaystyle (0, 4)

Example Question #1 : Convert Polar Equations To Rectangular Form And Vice Versa

Convert the polar equation into rectangular form:

\displaystyle r=8\sec\theta

Possible Answers:

\displaystyle x=8

\displaystyle y=8

\displaystyle (x-1)^2+y^2=64

\displaystyle x^2+y^2=8

Correct answer:

\displaystyle x=8

Explanation:

Remember that \displaystyle \sec\theta=\frac{1}{\cos\theta}

So then \displaystyle r=8\sec\theta becomes

\displaystyle r=\frac{8}{\cos\theta}

Now, multiply both sides by \displaystyle \cos\theta to get rid of the fraction.

\displaystyle r\cos\theta=8

Since \displaystyle x=r\cos\theta, the rectangular form of this equation is

\displaystyle x=8

Example Question #2 : Convert Polar Equations To Rectangular Form And Vice Versa

Convert the polar equation into rectangular form:

\displaystyle r^2=4\sin(2\theta)

Possible Answers:

\displaystyle (x^2+y^2)^2=8xy

\displaystyle (x^2+y^2+8)=16

\displaystyle (x^2-^2)^2=8xy

\displaystyle (x^2+y^2)^2=8

Correct answer:

\displaystyle (x^2+y^2)^2=8xy

Explanation:

Start by using the double angle formula for \displaystyle \sin.

\displaystyle \sin(2\theta)=2\sin\theta\cos\theta

Substitute that into the equation gives the following:

\displaystyle r^2=4(2\sin\theta\cos\theta)

\displaystyle r^2=8\sin\theta\cos\theta

Because we need \displaystyle r\cos\theta and \displaystyle r\sin\theta to get \displaystyle x and \displaystyle y respectively, multiply both sides by \displaystyle r^2.

\displaystyle (r^2)(r^2)=8(r\sin\theta)(r\cos\theta)

Now, recall that \displaystyle r^2=x^2+y^2.

\displaystyle (x^2+y^2)(x^2+y^2)=8xy

\displaystyle (x^2+y^2)^2=8xy

Example Question #2 : Convert Polar Equations To Rectangular Form And Vice Versa

Convert the polar equation to rectangular form:

\displaystyle \theta=\frac{5\pi}{6}

Possible Answers:

\displaystyle y=-3x

\displaystyle y=-\frac{3}\sqrt3}x

\displaystyle y=-\frac{\sqrt3}{3}x

\displaystyle y=-\sqrt3x

Correct answer:

\displaystyle y=-\frac{\sqrt3}{3}x

Explanation:

Start by taking the tangent.

\displaystyle \tan\theta=\tan\frac{5\pi}{6}

\displaystyle \tan\theta=-\frac{\sqrt3}{3}

Recall that \displaystyle \tan\theta=\frac{y}{x}

\displaystyle \frac{y}{x}=-\frac{\sqrt3}{3}

\displaystyle y=-\frac{\sqrt3}{3}x

Example Question #3 : Polar Coordinates

Convert the polar equation to rectangular form:

\displaystyle \theta=\frac{5\pi}{4}

Possible Answers:

\displaystyle y=\frac{5\pi}{4}

\displaystyle y=-x

\displaystyle y=x

\displaystyle x=\frac{5\pi}{4}

Correct answer:

\displaystyle y=x

Explanation:

Start by taking the tangent.

\displaystyle \tan\theta=\tan\frac{5\pi}{4}

\displaystyle \tan\theta=1

Recall that \displaystyle \tan\theta=\frac{y}{x}

\displaystyle \frac{y}{x}=1

\displaystyle y=x

Example Question #1 : Convert Polar Equations To Rectangular Form And Vice Versa

Convert the polar equation to rectangular form:

\displaystyle r=4\sec\theta\tan\theta

Possible Answers:

\displaystyle y=2\sqrt x

\displaystyle y=\frac{1}{4}x^2

\displaystyle y=\frac{1}{2}x^2

\displaystyle x=4y^2

Correct answer:

\displaystyle y=\frac{1}{4}x^2

Explanation:

Recall that \displaystyle \sec\theta=\frac{1}{\cos\theta}

Substituting this into the given equation gives

\displaystyle r=4\frac{1}{\cos\theta}\tan\theta

Multiply both sides by \displaystyle \cos\theta to get rid of the fraction.

\displaystyle r\cos\theta=4\tan\theta

Recall that \displaystyle x=r\cos\theta and that \displaystyle \tan\theta=\frac{y}{x}

\displaystyle x=4\frac{y}{x}

\displaystyle 4y=x^2

\displaystyle y=\frac{1}{4}x^2

Example Question #1 : Convert Polar Equations To Rectangular Form And Vice Versa

Convert the polar equation into rectangular form:

\displaystyle r=2\csc\theta\cot\theta

Possible Answers:

\displaystyle y=2x^2

\displaystyle y=\sqrt{\frac{x}{2}}

\displaystyle y=\sqrt{2x}

\displaystyle y=-\sqrt{2x}

Correct answer:

\displaystyle y=\sqrt{2x}

Explanation:

Recall that \displaystyle \csc\theta=\frac{1}{sin\theta} and \displaystyle \cot\theta=\frac{1}{tan\theta}

\displaystyle r=2\frac{1}{\sin\theta}\frac{1}{\tan\theta}

Multiply both sides by \displaystyle \sin\theta

\displaystyle r\sin\theta=2(\frac{1}{\tan\theta})

Recall that \displaystyle \tan\theta=\frac{y}{x} and \displaystyle r\sin\theta=y

 

\displaystyle y=2(\frac{1}{\frac{y}{x}})

\displaystyle y=2(\frac{x}{y})

\displaystyle 2x=y^2

\displaystyle y=\sqrt{2x}

Example Question #1 : Convert Polar Equations To Rectangular Form And Vice Versa

Convert the polar equation into rectangular form:

\displaystyle r=-3\sec\theta

Possible Answers:

\displaystyle x^2+y^2=-3

\displaystyle (x-3)^2=4

\displaystyle x=-3

\displaystyle y=-3

Correct answer:

\displaystyle x=-3

Explanation:

Recall that \displaystyle \sec\theta=\frac{1}{\cos\theta}

Plugging this into the equation gives us

\displaystyle r=-3\frac{1}{\cos\theta}

Multiply both sides by \displaystyle \cos\theta to get rid of the fraction.

\displaystyle r\cos\theta=-3

Recall that \displaystyle r\cos\theta=x

So then the rectangular form of the equation is \displaystyle x=-3

Learning Tools by Varsity Tutors