Precalculus : Sum and Difference Identities For Cosine

Study concepts, example questions & explanations for Precalculus

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Sum And Difference Identities For Cosine

Use the sum or difference identity to find the exact value: \(\displaystyle cos255^\circ\)

Possible Answers:

\(\displaystyle \frac{-1}{2}\)

\(\displaystyle \frac{\sqrt{2}+\sqrt{6}}{4}\)

\(\displaystyle \frac{2\sqrt{2}}{4}\)

\(\displaystyle \frac{\sqrt{2}-\sqrt{6}}{4}\)

\(\displaystyle \frac{1}{2}\)

Correct answer:

\(\displaystyle \frac{\sqrt{2}-\sqrt{6}}{4}\)

Explanation:

Using the identity, we can break up the 255 into and then solve: \(\displaystyle cos300\cdot cos45+sin300\cdot sin45\rightarrow \frac{1}{2}\cdot \frac{\sqrt{2}}{2}+\frac{-\sqrt{3}}{2}\cdot \frac{\sqrt{2}}{2}\rightarrow \frac{\sqrt{2}-\sqrt{6}}{4}\)  

Example Question #1 : Trigonometric Identities

Is the following equation an identity? \(\displaystyle cos(x-\pi)=cos(x)\)

Possible Answers:

Yes it is an identity.

No it is not an identity.

It cannot be determined from the given information.

Correct answer:

No it is not an identity.

Explanation:

\(\displaystyle cos(x-\pi)=cos(x)\rightarrow cosxcos\pi+sinxsin\pi=cosx\rightarrow cosx(-1)+sinx(0)=cosx\rightarrow -cosx\neq cosx\)

and due to this inequality, this is not an identity

Example Question #1 : Sum And Difference Identities

Use the sum or difference identity to find the exact value: \(\displaystyle \cos 255^{\circ}\)

Possible Answers:

\(\displaystyle \frac{\sqrt{2}+\sqrt{6}}{4}\)

\(\displaystyle -\frac{1}{2}\)

\(\displaystyle \frac{\sqrt{2}-\sqrt{6}}{4}\)

\(\displaystyle \frac{1}{2}\)

\(\displaystyle \frac{2\sqrt{2}}{4}\)

Correct answer:

\(\displaystyle \frac{\sqrt{2}-\sqrt{6}}{4}\)

Explanation:

Using the identity, we can break up the \(\displaystyle 255\) into \(\displaystyle 300-45\) and then solve: \(\displaystyle \cos 300\cdot \cos 45+\sin 300\cdot \sin 45\rightarrow \frac{1}{2}\cdot \frac{\sqrt{2}}{2}+\frac{-\sqrt{3}}{2}\cdot \frac{\sqrt{2}}{2}\rightarrow \frac{\sqrt{2}-\sqrt{6}}{4}\) and so the correct answer is \(\displaystyle \frac{\sqrt{2}-\sqrt{6}}{4}\).

Example Question #2 : Trigonometric Identities

Possible Answers:

The answer cannot be determined from the information provided.

No it is not an identity

Yes it is an identity

Example Question #9 : Sum And Difference Identities

Use the sum or difference identity to find the exact value of \(\displaystyle \sin 165^{\circ}\).

Possible Answers:

\(\displaystyle \frac{1}{2}\)

\(\displaystyle \frac{\sqrt{6}}4{}\)

\(\displaystyle \frac{\sqrt{6}-\sqrt{2}}{4}\)

Correct answer:

\(\displaystyle \frac{\sqrt{6}-\sqrt{2}}{4}\)

Explanation:

Here we break up the \(\displaystyle 165\) into \(\displaystyle 135+30\) and solve using the sin identity: \(\displaystyle \sin 135\cdot \cos 30+\cos 135\cdot \sin 30\rightarrow \frac{\sqrt{2}}2{}\cdot \frac{\sqrt{3}}2{}+\frac{-\sqrt{2}}2{}\cdot \frac{1}{2}\rightarrow \frac{\sqrt{6}-\sqrt{2}}{4}\) and so here the credited answer is \(\displaystyle \frac{\sqrt{6}-\sqrt{2}}{4}\).

Learning Tools by Varsity Tutors